1	Versi	on No) .		F	ROLI	NU	MBE	R]	
]
(0)	(0)	(0)	(0)	0		(0)	(0)	(0)	(0)	(0)	
(1)	(1)	(1)	(1)		(1)	(1)	(1)	(1)	(1)	(1)	
(2)	(2)	(2)	(2)	(2)	2	(2)	(2)	(2)	(2)	2	Answer Sheet No
(3)	(3)	(3)	(3)	(3)	3	(3)	(3)	(3)	(3)	3	Co
(4)	(4)(5)	(4)(5)	(4)(5)	(4)	(4)(5)	45	(4)(5)	(4)(5)	(4)(5)	(4)(5)	
(6)	(6)	(6)	(6)	(6)		(6)	6	(6)	(6)	(6)	Sign. of Candidate
7	(7)	(7)	(7)	(7)	7 (7)	(7)	(7)	(7)	(7)	(7)	
(8)	(8)	(8)	(8)	(8)) (8)	(8)	(8)	(8)	(8)	(8)	Sign. of Invigilator
(9)	(9)	(9)	(9)	9	9	(9)	(9)	(9)	(9)	(9)	
				C							ord Set)
							ION - allow	,		ks 17) nutes	
Soctio	n /	\ ic o	omni	ilcom A	11 nort	s of t	hia ac	action	oro	o bo	answered on this page and hande
			-	•	-						allowed. Do not use lead pencil.
Q.1	Fil	l the	relev	ant bub	ble for	· each	n pari	t. Eac	ch pa	• rt cai	rries one mark.
V	(1)										give brown colored gas:
	, ,	A	4 .	Na ₂ SO	4				B.	Ba	aCO ₃
		(C.	Mg(N0	J ₃) ₂)	D.	Ca	aSO ₄
	(2)		Li ₂ CC the re		mally	ınstal	ole w	herea	s othe	er Gro	oup-I carbonates are stable. Predict
			4.	Li is le		_					\bigcirc
			3. C.	Li has Li ⁺ can						ion	O
			Э. Э.	Li can							n O
	(3)	I	denti	fy the na	ture of	the l	igand	[
	(-)		-000		~ Ш		-6				CI 000:
			000		2						CH ₂ — COO-
					N		·CH ₂		CH ₂		N N
			-00	ос —	CH ₂						CH ₂ —— COO-
X		A	A .	Monod	lentate)	B.	Bi	identate (
		(C.	Triden	tate		C		D.	Не	exadentate O
	(4)	I	Label	the elem	ent in	the fi	rst se	ries c	of out	er trai	nsition elements that has highest
		t		ng energy Titaniu	√.			`	В.		anadium ()
			A. C.	Chrom)	D.		Ianganese

(5)	Identif	y the functional group	presen	t in the	Anhydride.			
	A.	_с_н _	\bigcirc	B.	_c_		\circ	
	C.		\circ	D.	0	0=0	0	
(6)	What i	is the IUPAC name of allysis?	alkene	which v	will give propand	one and	l propanal or	
	A. C.	2-Butene 2-Pentene	\bigcirc	B. D.	2-Methyl-2-Bu 2-Methyl-2-Pe		0	
(7)	Propos A. B. C. D.	se the types of Isomeris Chain isomerism & P Chain isomerism & F Chain isomerism, Pos Position isomerism, F	osition unction sition is	isomer nal grou somerisi	ism p isomerism n & Functional			0000
(8)		is the name of Grignard on reaction with CO ₂ ? n-Propyl Magnesium Iso-propyl magnesium N-Butyl Magnesium Neo-Butyl Magnesium	Bromi n Brom Bromic	de nide le	will give 2,2-Di	methyl	Propanoic	
(9)	Amine	es are basic in nature. I	dentify	which	one of the follow	ving is	more basic?	
	A.	H.H.	0	В.	H ₃ C N H		0	
	C.	H ₃ C ^N CH ₃	O	D.	H ₃ C		0	
(10)	Identif A.	Cy the most reactive Alo CH ₃ -OH	cohol w	vith resp B.	oect to the break CH ₃ -CH ₂ OH OH	age of (O-H bond.	
		CH ₃ -C-CH ₃			CH ₃ - C- CH ₃			
	C.	н	\bigcirc	D.	CH ₃		\bigcirc	
(11)		t the product of acid hy 4 catalyst.	drolys	is of CI	H_3 -C \equiv C- C H_3 in	the pre	esence of	
2	A.	Acetaldehyde	\bigcirc	B.	Propanal		\bigcirc	
	C.	2-Butanol	\circ	D.	Butanone		\circ	
(12)	When A. C.	secondary alcohol reac Lucas test Toulen test	ets with	n NaOH B. D.	to produce yello Benedict test Iodoform test	ow ppt,	it is called:	
(13)		Ty the name of the comp Ethyl amine Ethyl Diazonium Chlo	\circ	which v B.			neating?	

14.	Predict which maltose is the disaccharide of												
	A.	Glucose only	\bigcirc	B.	Galactose only	\bigcirc							
	C.	Glucose & Fructose	\bigcirc	D.	Galactose & Fructose	e ()							
(15)	Predio polish	ct which one of the foll	owing s	ubstanc	e is used as film formi	ing agent in nail							
	A.	Nitrocellulose	\bigcirc	B.	Ethyl acetate	\bigcirc							
	C.	Butyl stearate	\circ	D.	Glycerol	0							
(16)	Identi	ify which one of the fol	lowing	water p	ollutant is Carcinogen	ic?							
	A.	Polycyclic hydrocarb	ons										
	B.	Mineral acids			\circ								
	C.	D.D.T			0								
	D.	Nitrate fertilizers			0								
(17)	Mass	spectrum of Magnes	ium sh	ows tha	at it contains three i	sotopes. Mg-24							
` /	(78.70 is:	0%), Mg-25 (10.13%)	& Mg-2	26(11.1	7%). The average atom	mic mass of Mg							
	A.	24.32 amu	\bigcirc	B.	25,32 amu	\bigcirc							
	C.	26.32 amu	Ŏ	D.	27.32 amu	Ŏ							

Federal Board HSSC-II Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2:35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. List three raw materials of nail polish.
- ii. Propose reaction mechanism of following.

- iii. Describe the significance of catalytic converter and give reactions involved in it.
- iv. Demonstrate reaction of 1-Butyne with ammonical silver nitrate and cuprous chloride.
- v. Illustrate one method of preparation of diazonium salt.
- vi. Briefly describe contact adhesives.
- vii. Briefly describe the oxidative cleavage of 1,2 -diol. Give valid chemical reaction.
- viii. Differentiate between C₆H₅OH and C₆H₁₃OH by chemical reaction.
- ix. Demonstrate the oxidation of: CH₃-CH₂-CH₂-CHO and CH₃-C-CH₂CH₃ by chemical reactions.
- x. Propose reaction mechanism of 2,2 -Dimethyl butanal with sodium hydroxide.
- xi. Briefly discuss reactivity of Ethanoic acid with phenol.
- xii. Explain briefly the role of inhibitors in enzyme catalyzed reactions.
- xiii. List down all the various raw materials for petrochemical industry.
- xiv. Recognize and briefly describe water pollutants.
- xv. State the regions electromagnetic spectrum used in IR and UV spectroscopy.
- xvi. Explain briefly the trends of oxidation states in groups IA, IIA, IVA, and VIIA of the periodic table.
- xvii. Demonstrate the reaction of potassium dichromate with oxalic acid by balanced chemical equation.
- xviii. List three uses of plants as a source organic compound.
- xix. Interpret why SN_2 mechanism is chosen rather than SN_1 in the preparation of primary alkyl halides?
- xx. Identify 'A' and 'B' by completing reactions.

 CH₃CH₂CH₂OH K₂Cr₂O₇/H₂SO₄ A NaHSO₃ B

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Propose reaction mechanism of free radical with ethane. (06)
 - b. Identify factors that affect enzyme activity such as temperature and p^H. Describe the components of complex compounds. (2+2+3)
- Q.4 a. Demonstrate by the balanced chemical reaction of potassium manganate (VII) with the following: (2+2+2)
 - Ferrous Sulphate (ii) Oxalic acid (iii) Mohr's salt
 - b. Describe the trend in solubility of the hydroxides sulphates and carbonates of group IIA. (2+2+3)
- Q.5 a. Identify A and B compounds by completing the chemical reactions. Also write IUPAC names of A and B. (2.5+2.5+2)

b. Analyze the ethanol Infrared spectrum by using following data. (06)

Wavenumber (cm ⁻¹)	Bond	Functional Group
3400-3250 (m)	N–H stretch	primary, secondary amines, amides
3500-3200 (s,b)	O–H stretch, H– bonded	alcohols, phenols
2260–2100 (w)	-C (triple bond) C- stretch	alkynes
1650-1580 (m)	N-H bend	primary amines
1300-1150 (m)	C-H wag (-CH ₂ X)	alkyl halides
1360–1290 (m)	N-O symmetric stretch	nitro compounds
1335-1250 (s)	C-N stretch	aromatic amines
1320–1000 (s)	C-O stretch	alcohols, carboxylic acids, esters, ethers

CHEMISTRY HSSC-II (3rd Set) Student Learning Outcomes Alignment Chart

SECTION A

Q.1

- 1. Discuss the trends in thermal stability of the nitrates and carbonates of Group-II elements.
- 2. Explain the effect of heat on carbonates of Group-I elements.
- 3. Explain the shapes, origin of colors and nomenclature of coordination compounds.
- 4. Describe electronic structure of elements and ions of d-block elements.
- 5. Explain nomenclature and structure of aldehydes.
- 6. Describe the chemistry of alkenes by ozonolysis.
- 7. Define and explain with suitable examples the term isomerism
- 8. Discuss chemistry of Grignard reagent by the addition of carbon dioxide.
- 9. Discuss basicity of Amines.
- 10. Explain reactivity of alcohols.
- 11. Discuss the chemistry of Alkynes by hydrohalogenation.
- 12. Identify alcohols using Idoform Test.
- 13. Describe preparation of Amides.
- 14. Explain the basis of classification of carbohydrates.
- 15. Describe preparation of nail polish.
- 16. Recognize and describe various water pollutants.
- 17. Outline the use of MS in determination of relative isotopic masses and isotopic abundance.

SECTION-B

Q.2

- i. Describe preparation and applications of various cosmetics like nail varnish, nail polish remover and lipstick.
- ii. Discuss chemistry of benzene and methyl benzene by Friedal Craft's Alkylation and Acylation.
- iii. List possible alternatives to the use of CFSs.
- iv. Discuss chemistry of Alkynes by hydrogenation, hydration, bromination and reaction with metals.
- v. Describe chemistry of Amines by alkylation of amines with RX, reactions with aldehydes, ketones, preparation of amides and diazonium salts.
- vi. Describe the types and applications of synthetic adhesives.
- vii. Describe the chemistry of alcohols by oxidative cleavage of 1, 2-diols.
- viii. Differentiate between alcohol and phenol.
- ix. Describe oxidation reactions of aldehydes and ketones.
- x. Describe acid and base catalyzed nucleophilic addition reactions of aldehydes and ketones.
- xi. Discuss reactivity of phenol and carboxylic acid.
- xii. Explain the role of inhibitors of enzyme catalyzed reactions.
- xiii. List the various raw materials for photo chemical industry.
- xiv. Recognize and describe various water pollutants.
- xv. State the regions of electromagnetic spectrum used in IR and UV visible spectrum.

- xvi. Explain the trends in physical properties and oxidation states in group I, II, IV and VI of Periodic table.
- xvii. Describe the reactions of potassium dichromate with oxalic acid.
- xviii. Explain the use of plants as a source of organic compounds.
- xix. Describe the mechanism and types of nucleophilic substitution reactions.
- xx. Reactivity of alcohols (oxidation).

SECTION-C

- **Q.3** a. Describe the mechanism of free radical substitution in ethane.
 - b. Identify factors that affect enzyme activity such as effect of temperature and PH
- **Q.4** a Describe the reactions of potassium manganite VII with ferrous sulphate, oxalic acid and Mohr's salt.
 - b. Describe the trend in solubility of hydroxides, sulphates and carbonates of Group II elements.
- **Q.5** a. Describe the reactions of carboxylic acid derivatives.
 - b. Determine the structure of ethanol from its IR spectrum.

CHEMISTRY HSSC-II (3rd Set)

TABLE OF SPECIFICATION

Topics/Sub topics	s and p block elements 13	d and f block elements 14	Organic compounds 15	Hydro carbons 16		Alcohol phenyl and ether 18	e and	Carboxylic acids 20	Bio chemistry 21	Industrial chemistry 22	Environme ntal chemistry 23	Analytical chemistry 24	Total marks for each Assess ment Objecti ve	%age of cognitive level
(Knowledg e based)	4 b(7)	1(4)(1)	2 xviii(3)	1(6)(1)	1(8)(1)	1(12)(1) 2 vii(3)		1(13)(1)		2 i(3) 2 vi(3)	2 iii(3) 2 xiii(3) 2 xiv(3)	2 xv(3)	36	31%
(Understan ding based)		1(3)(1) 2 xvii(3) 4 a(6)	1(5)(1)	1(11)(1) 2 iv(3)	1(9)(1) 2 xix(3) 3 b(7)	1(10)(1) 2 viii(3) 2 xi(3) 2 xx(3)	2 ix(3)	5 a(7)	1(14)(1) 2 xii(3)	1(15)(1)	1(16)(1)		57	49.1%
(Applicatio n based)				1(7)(1) 2 ii(3) 3 a(6)	2 v(3)		2 x(3)	5				1(17)(1) 5 b(6)	23	19.8%
Total marks for each Topic/Subt opic	12	11	04	15	15	14	06	08	04	07	10	10	116	100%

KEY:

1(1)(1)

Question No. (Part No.) (Allocated Marks)

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult