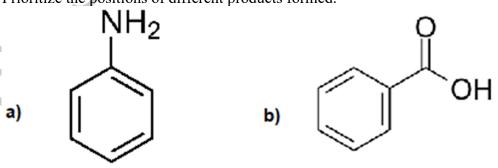
Version No.						R	OLL	NU	MBF	ER				
0	0	0	0		0	0	0	0	0	0	0			
1	1	1	1		1	1	1	1	1	1	1			
2	2	2	2		2	2	2	2	2	2	2			
3	3	3	3		3	3	3	3	3	3	3	Answer Sheet No)	
4	4	4	4		4	4	4	4	4	4	4			
(5)	(5)	(5)	5		(5)	(5)	(5)	(5)	5	5	(5)	Sign. of Candida	te	
6	6	6	6		6	6	6	6	6	6	6			
7	7	7	7		7	7	7	7	7	7	7			
8	8	8	8		8	8	8	8	8	8	8	Sign. of Invigilate	or	
9	9	9	9		9	9	9	9	9	9	9			
CHEMISTRY HSSC-II														
SECTION – A (Marks 17) Time allowed: 25 Minutes														
Section - A is compulsory. All parts of this section are to be answered on this page and handed														
ver t	o the	Cen	itre S	uperir	itend	ent.	Dele	ing/o	overv	vritir	ng is 1	not allowed. Do no	t use lea	d pencil.
Q.1	Fil	l the	rele	vant k	oubb	le fo	r eac	h pa	rt. E	Cach	part	carries one mark.		
	1. The first ionization energy is higher for the:													
			A. C.			netal:	S	8))	B		Alkaline earth me Noble gases	tals	\bigcirc
												\circ		
	2.		Crım A.	son re Li	ed 1S	chara	icteri	stic i	flame)	e colo		Na	\bigcirc	
			C.	Ca				Ŏ)	D		Ba	Ŏ	
	3.		The c	eatalys	st use	ed fo	r syn	thesi	s of a	amm	onia l	by Haber process is	s:	
			A. C.	Fe Cr ₂	0			Q		B D		TiCl ₄	\bigcirc	
				_			1			D	•	ZnO	O	
	4.		Aero A.	sols a Fur	nd lo igicio		are	used	as:	В		Repellents	\bigcirc	
			C.		bicio			ŏ)	D		Miticides	Ŏ	
	5.	5. Due to inert pair effect oxid							oxi	idatio	on sta	te is more stable th	an	for Pb.
			A.	2+,	4+			0)	В		1+,4+	O	_
			C.	4+,	2+			\circ)	D		2+,3+	\bigcirc	
	6.	(Ozon	e is d		yed 1	oy:			Ъ		CO		
		C	A. C.	SO CF				\mathcal{C}))	B D		CO ₂ HCl	\circ	
	7					na fa	11033	na ia	1100				, , ,	
	7.		wnic A.				neth:			as r B		nce in NMR spectr Tetra methylsiland		
			C.				netha		Ŏ	D		Tri iodomethane	Ŏ	
										2.5				

8.		one of the foll magnetic radiations			e does not invol-	ve interaction of								
	A. C.	IR spectroscopy Mass spectroscopy	O	B. D.	NMR spectroscopy UV spectroscopy									
9.	Benzoic acid is obtained by oxidation of:													
	A.	m-Xylene	Q	B.	p-Xylene	Q								
	C.	Toluene	O	D.	Phenol	O								
10.	The str	ructural formula for	carboxylic	anhydi	ride is:									
	A.	RCOOCOR	0	B.	RCOR	0								
	C.	RCOOR	Ō	D.	RCOOH	Ō								
11.	Which	one of the following	g is not a r	nucleopl	hile?									
	A.	H_2O	0	B.	H_2S	0								
	C.	BF_3	0	D.	NH_3	0								
12.	Oxonium ion is formed when:													
	A.	Ethanol react with	Na metal	C)									
	B.	Phenol react with N	VaOH)									
	C.	Ether is treated with		C) ~								
	D.	Ethanol treated with	h NaOH/I2	2 C										
13.	Which	one of the following	g reagents	reacts v	with both aldehyde a	and ketone?								
	A.	Grignard reagent	0	B.	Tollen's reagent	\circ								
	C.	Fehling's reagent	0	D.	Benedict's reagent	0								
14.	Which one of the following reagents is used for reduction of carboxylic acid?													
	A.	H ₂ /Ni	\circ	B.	H ₂ /Pt	\circ								
	C.	NaBH ₄	0	D.	LiAlH ₄	O								
15.	Which one of the following is used as major component of soap?													
	A.	Fatty acid	0	B.	Palm oil	\circ								
	C.	Proteins	0	D.	Saccharides	0								
16.	IUPAC name of Glutaric acid is:													
	A.	Butane dioic acid	0	B.	Pentane dioic acid	\circ								
	C.	Propane dioic acid	O	D.	Hexane dioic acid	0								
17.	Which	one of the following	g nuclei is	NMR a										
	A.	C^{12}	\circ	B.	C^{13}	0								
	C.	O^{16}	\circ	D.	Ne ¹⁰	0								

Time allowed: 2:35 hours Total Marks: 68


Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. The thermal stability of carbonates of alkaline earth metals increases down the group. Justify this behaviour.
- ii. The order as reducing agent of Halide ions is $F < Cl < Br < \Gamma$. Interpret it.
- iii. Ammonia act as both ligand and base. Justify this statement by the reaction with copper ion.
- iv. What are ligands? Give example of tridentate and hexadentate ligand.
- v. How will you prepare glycerol from hydrolysis and saponification of fats and oils?
- vi. How can nylon-6,6 be prepared from Adipic acid? Give complete chemical reaction.
- vii. How does tetraethyl lead cause air pollution?
- viii. What are the oxidation number and coordination number of the metals in the following complex compounds?
 - (a) $[Cr(H_2O)_4(OH)_2]NO_3$
- (b) $K_4[Fe(CN)_6]$
- ix. What information are obtained from number of peaks and area under the peaks in NMR spectrum?
- x. What are adhesives? How does hot Glue work?
- xi. Summarize the concept of optical Isomerism by drawing different isomeric structures of tartaric acid showing their optical behaviour.
- xii. How will you prepare following compounds starting from acetylene?
 - a. Acetaldehyde
- b. Acetic acid
- xiii. The following mono substituted benzene are subjected to nitration reaction. Prioritize the positions of different products formed.

Page 1 of 2

- xiv. Give stereo chemical evidences of Nucleophilic Substitution reactions of alkyl halides.
- xv. Identify the products when CH₃MgBr react with ethyl acetate? Give its mechanism.
- xvi. How Lucas Test being employed to distinguish different types of alcohols?
- xvii. Compare acidity of phenols and carboxylic acid. Support your answer by drawing resonance structures?
- xviii. Discuss the reactivity order of following carbonyl compounds with reason. Formaldehyde > Acetaldehyde > Butanone
- xix. How can the following acid derivative be prepared from carboxylic acid? a.Acid anhydride b. Acyl halide c. Acid amide
- xx. How can propanoic acid be prepared from ethane?

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. Describe the peculiar behavior of 1st member of the alkaline earth metals. Give seven main differences.
 - b. How does arrangement of electrons affect the magnetic properties of transition elements. How can it be calculated? Calculate magnetic moment of Fe = 26.
- Q.4 a. Define isomerism. Make all possible structural isomers of $C_4H_{10}O$, classify each giving IUPAC names. (1+2+2+2)
 - b. What are the possible products formed when formaldehyde reacts with the following reagents? (6)
 - i. HCN ii. NaOH iii. AgNO₃/NH₄OH
- Q.5 a. What is beta-elimination reaction? Explain reaction mechanism for the Unimolecular and Bimolecular elimination reactions of R X. (1+3+3)
 - b. Explain the following: (3+3)
 - i. The different routes for the loss of zinc from human body.
 - ii. Is carbon dioxide responsible for greenhouse effect? If yes then how?

* * * * *

CHEMISTRY HSSC-II SLOs

SECTION A

- 1. Describe how physical properties like ionization energy changes within a group and period in the periodic table?
- 2. Perform flame tests and explain the appearance of colors in the flame.
- 3. Iron as a catalyst in Haber's Process. (Describe the important reactions and uses of V, Cr, Mn, Fe and Cu)
- 4. Pesticides.
- 5. Inert pair effect and formation of ionic bond.
- **6.** Describe the role of CFCs in destroying ozone in the stratosphere.
- 7. Describe the standard scales used in proton NMR.
- **8.** Outline the use of MS determination of relative isotopic masses and isotopic abundance.
- **9.** Describe addition reactions of benzene and methyl benzene.
- **10.** Describe reactions of carboxylic acid derivatives.
- 11. Describe the mechanism and types of nucleophilic substitution reaction.
- **12.** Describe the preparation of phenol from benzene sulphonic acid, chloro benzene and acidic oxidation of Cumene.
- 13. Describe oxidation reactions of aldehydes and ketones.
- **14.** Describe the reactivity of carboxylic acid.
- 15. Identify the nutritional and biological importance of lipids.
- **16.** Nomenclature of carboxylic acid.
- 17. Outline in simple terms the principles of proton NMR spectroscopy.

Section B

O2:

- i. Discuss the trends in thermal stability of the nitrates and carbonates of Group II elements.
- ii. Explain the relative behavior of halogens as oxidizing agents and reducing agents.
- iii. Describe important reactions and uses of copper.
- iv. Explain nomenclature of coordination compounds.
- v. Describe basics of classification and structure-function relationship of lipids.
- vi. Describe the formation and uses of Nylon.
- vii. Recognize that the release of COx, SOx, NOx, VOCs are associated with the combination of hydro carbon based fuels.
- viii. Explain nomenclature of coordination compounds.
- ix. Explain how chemical environment of proton affects the magnetic field it experiences and hence the absorption of energy at resonance frequency.
- **x.** Describe types and applications of synthetic adhesives.
- **xi.** Explain what is meant by a chiral center and show that such a center gives rise to optical isomerism.
- **xii.** Discuss chemistry of Alkynes by hydrogenation, ozonolysis, hydration etc.

- **xiii.** Apply the knowledge of position of substituent in the electrophilic substitution of benzene.
- **xiv.** Describe the mechanism and types of nucleophilic substitution reactions.
- **xv.** Discuss chemistry of Grignard's reagent by the addition of esters.
- **xvi.** Explain the reactivity of alcohols.
- **xvii.** Explain the acidity of phenols.
- xviii. Describe the reactivity of Aldehydes and Ketones and their comparison.
- xix. Describe the chemistry of carboxylic acids by conversion to carboxylic acid derivatives.
- **xx.** Describe preparation of carboxylic acid by carbonation of Grignard's reagent.

SECTION C

Q3:

- a. Differentiate beryllium from other members of its group.
- **b.** Magnetic properties of transition elements. (Describe the electronic structures of elements and ions of d-block elements)

Q4:

- a. Define and explain with suitable examples the terms isomerism and structural isomerism.
- **b.** Describe acid and base catalyzed addition reactions of aldehydes and ketones.

Q5:

- **a.** Describe the mechanism and types of elimination reactions.
- **b.** i. Identify the sources of minerals such as zinc.
 - ii. Explain greenhouse effect and global warming as resulting in climate change.

CHEMISTRY HSSC-II

TABLE OF SPECIFICATION

Topics/Su btopics	s and p block elements	d and f block elements	Organic compounds	Hydro carbons	Alkyl halides and	Alcohol phenyl and	Aldehyde and ketones	Carboxy lic acids	Bio chemistry	Industrial chemistry		Analytical chemistry	Assessment	%age
					amines	ether							Objective	
(Knowledg	1-2(01)	1-3(01)	1-10(01)		2-xiv(03)		1-13(01)	1-14(01)		1-4(01)	1-6(01)	1-7(01)	30	25.9%
e based)	3a(07)	2-iii(03)					4b(06)							
		2-iv(03)												
(Understa	1-1(01)	3b(06)		2-xi(03)	1-11(01)	1-12(01)	2-xviii(03)	2-xix(03)	1-15(01)	2-vi(03)	2-vii(03)	1-8(01)	63	54.3%
nding	1-5(01)			4a(07)	2-xv (03)	2-xvi(03)		2-xx(03)	2-v(03)	2-x(03)		1-17(01)		
based)	2-ii(03)				5a(07)	2-xvii(03)								
(Applicati	2-i(03)	2-viii(03)		1-9(01)				1-16(01)	5b-i(03)		5b-ii(03)	2-ix(03)	23	19.8%
on based)				2-xii(03)										
				2-xiii(03)			7							
Total	16	16	01	17	14	07	10	08	07	07	07	06	116	100%
marks for							()							
each														
Topic/Sub														
topic														

KEY:

1-1(01)

Question No-Part No. (Allocated Marks)