

Time allowed: 25 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. All parts carry one mark.

1.	In complex numbers, what is the multiplicative inverse of 2 <i>i</i> ?										
	A.	$\frac{-i}{2}$	0	B.	$\frac{1}{2}$	\bigcirc					
	C.	$\frac{-i}{2}$ $\frac{-1}{2}$	0	D.	$\frac{2}{i}$	\bigcirc					
2.	Which	n one of the foll	lowing represe	nts the n	egation of the stateme	nt $\sim p \rightarrow q$?					
	A.	$\sim q \rightarrow p$	0	B.	$\sim q \rightarrow \sim p$	\bigcirc					
	C.	$q \rightarrow \sim p$	0		$p \rightarrow \sim q$	\bigcirc					
3.	What	is the value of	$\alpha, \text{ if } \begin{vmatrix} 2 & 3 & 0 \\ 3 & 9 & 0 \\ 2 & 15 & 2 \end{vmatrix}$	$\begin{vmatrix} 0 \\ 6 \\ 1 \end{vmatrix} = \alpha \begin{vmatrix} 1 \\ 2 \\ 2 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
	A.	3	0	B.	6	\bigcirc					
	C.	9	\bigcirc	D	15	\bigcirc					
4.	What	is the solution	set of an equation	ion x^{-1}	$+\frac{1}{x^{-1}} = 2$?						
	A.	{1}	\bigcirc		{-1, 1}	\bigcirc					
	C.	$\{0, -1\}$	\bigcirc	D.	{1, 1}	\bigcirc					
5.	If -1		$+kx^{2}-x+2$	2 = 0, th	en the value of k is:						
	A.	-2	0	В.	2	0					
\sim	C.	-4	\bigcirc	D.	0	\bigcirc					
6.	The pa	artial fractions	of $\frac{7x+25}{(x+3)(x+4)}$	are:							
	A.	3 . 3	\bigcirc	B.	$\frac{3}{r+4} + \frac{4}{r+3}$	\bigcirc					
	C.	$\frac{\overline{x+4}}{x+4} + \frac{\overline{x+3}}{3}$ $\frac{3}{x+4} - \frac{3}{x+3}$	\bigcirc	D.	$\frac{\frac{3}{x+4} + \frac{4}{x+3}}{\frac{-4}{x+4} + \frac{3}{x+3}}$	\bigcirc					
7.	For an	A.P: $2 + \frac{7}{2} + \frac{7}{2}$	$5 + \frac{13}{2} + \dots +$	a_{10} , the	value of S_{10} is:						
	A.	$\frac{265}{2}$	\bigcirc	B.	$\frac{175}{2}$	\bigcirc					
	C.	$-\frac{95}{2}$	\bigcirc	D.	195	00 00 00					
			Page 1	of 2							

What should be the geometric mean between $\sqrt{2}$ and $3\sqrt{2}$? 8. $\frac{6}{\sqrt{2}}$ B. $6\sqrt{2}$ A. \bigcirc C. $2\sqrt{2}$ $\sqrt{6}$ D. ()9. For what value of n_1 , ${}^{n}P_2 = 12$? B. 3 4 A. ()C. 12 D. 6 \bigcirc 10. On tossing a pair of fair coins, what is the probability of appearing both tails? A. B. ()()4 1 4 2 C. D. 4 11. Which one of the following is an expansion of $(1 + x)^{-1}$? $1 - x + x^2 - x^3 + \dots$ A. \bigcirc $1 + x - x^2 + x^3 + \dots$ B. $1 + x + x^2 + x^3 + \dots$ C. $1 - x - x^2 - x^3 + \dots$ D. 12. How many terms are there in the expansion of 30 31 A. B. C. 15 D. 16 13. Which one of the following is the simplified form of 1+sin θ $\sec\theta$ $\sec^2 \theta$ A. Β. $2 \sec^2 \theta$ C. D. $2 \sec \theta$ What will be the result if simplify cosx -14. $\cos(x +$ $+\cos($ A. cosx Β. 2cosx \bigcirc $(1-\sqrt{3})cosx$ C. 0 D. \bigcirc If $\theta = \frac{\pi}{2}$, then which one of the following options is true? 15. $cos2\theta = cos^2\theta + sin^2\theta$ A. B. $sin2\theta = 2sin\theta\cos\theta$ $sin\theta = -2\sin\left(\frac{\theta}{2}\right)\cos\left(\frac{\theta}{2}\right)$ C. \cap $cos\theta = cos^2\left(\frac{\theta}{2}\right) + sin^2\left(\frac{\theta}{2}\right)$ D. \bigcirc What is the period of a trigonometric function $\sin\left(\frac{\pi x}{2}\right)$? 16. A. 2 Β. \bigcirc () 1 1 C. D. \bigcirc \bigcirc 2 4 In a triangle ABC, what will be e-radius opposite to vertex A? 17. Δ B. \bigcirc s-b s–a D. $\left(\frac{1}{2}\right)$ is: The value of sec $|\sin^{-1}(-$ 18. 2 -A. Β. $\sqrt{3}$ $\sqrt{3}$ C. D. If $\sin^{-1} x + (\sin^{-1} x + \cos^{-1} x) = \pi$, then value of *x* is: 1 B. A. $\sqrt{2}$ 2 C. 0 \bigcirc D. $^{-1}$ Which one of the following is a solution set of $\sin x = \frac{1}{2}$, where $x \in [0, 2\pi]$? 20. $\left\{\frac{\frac{\pi}{6}, \frac{\pi}{2}}{\left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}}\right\}$ $\left(\frac{5\pi}{6},\frac{3\pi}{2}\right)$ A. Β. Ο \bigcirc C. D. \bigcirc

Time allowed: 2.35 hours

Total Marks: 80

Note: Sections 'B' and 'C' comprise pages 1-2 and questions therein are to be answered on the separately provided Answer Book.Write your answers neatly and legibly.

SECTION – B (Marks 48)

Q.2	Attem	pt any TWELVE parts. All parts carry equal marks. $(12 \times 4 = 48)$							
	i.	If $z_1 = 1 - 2i$, $z_2 = 2 + 3i$, $z_3 = 4 - 3i$, then find							
	and w	mpt any TWELVE parts. All parts carry equal marks. ($12 \times 4 = 48$) If $z_1 = 1 - 2i$, $z_2 = 2 + 3i$, $z_3 = 4 - 3i$, then find ($a)\frac{z_2}{z_3}$ ($b)\overline{z_1} \cdot \overline{z_3}$ write in the form $a + ib$. Convert the following to logical form and prove it by constructing truth table: $A \cap B = B \cap A$ If $\begin{vmatrix} z & x & 3 \\ x + 1 & 4 & x \end{vmatrix} = 11 - 2x^2$, then find the value of x . Find the real roots of $\frac{18}{x^4} + \frac{1}{x^2} = 4$. Resolve $\frac{3x^2 + 7x + 28}{x(x^2 + x + 7)}$ into Partial Fractions. Prove that cosine is a periodic function and its period is 2π . The sum of first thirty terms of an A.P is equal to square of sum of first six terms of the same A.P. Show that $10a + 145d = 12a^2 + 60ad + 75d^2$. A committee of 4 persons has to be chosen from 8 boys and 6 girls, consisting of at least one girl. Find the probability that the committee consists of more girls than boys. How many automobile license plates can be made, if each plate contains three different letters (from A to Z) followed by four different digits (from 0 to 9)? Find the first four terms, in ascending powers of x , in the binomial expression $of \frac{1}{\sqrt{9+x}}$. A regular Pentagon is inscribed in a circle of radius $15 \ cm$. Approximate the perimeter of the Pentagon. Prove the trigonometric identity $\frac{sin3\theta + sin5\theta + sin7\theta}{cos3\theta + cos5\theta + cos7\theta} = sin5\theta$ Draw the graph of $y = \sec x$, $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ Prove that $cot^{-1}\frac{119}{120} = 2sin^{-1}\frac{5}{13}$. Show that $2 \tan^2 \theta \cos \theta = 3$ can be written in the form $2cos^2 \theta + 3cos\theta - 2 = 0$ and solve the equation $2 \tan^2 \theta \cos \theta = 3$							
	ii.								
	11.								
	iii.	If $\begin{vmatrix} 2 & x & 3 \\ x+1 & 4 & x \end{vmatrix} = 11 - 2x^2$, then find the value of x.							
	iv.	Find the real roots of $\frac{18}{x^4} + \frac{1}{x^2} = 4$.							
	v.	Resolve $\frac{3x^2+7x+28}{x(x^2+x+7)}$ into Partial Fractions.							
	vi.	Prove that cosine is a periodic function and its period is 2π .							
	vii.								
	viii.								
	:								
	ix.								
	x.								
	xi.	A regular Pentagon is inscribed in a circle of radius 15 cm. Approximate the							
	C	perimeter of the Pentagon.							
	xii.	Prove the trigonometric identity $\frac{\sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos 3\theta + \cos 5\theta + \cos 7\theta} = \sin 5\theta$							
	xiii.	Draw the graph of $y = \sec x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$							
$\langle \rangle$	xiv.	Prove that $s^2 = \Delta \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$							
	XV.	Prove that $\cot^{-1}\frac{119}{120} = 2\sin^{-1}\frac{5}{13}$.							
	xvi.	Show that $2 \tan^2 \theta \cos \theta = 3$ can be written in the form							
		$2\cos^2\theta + 3\cos\theta - 2 = 0$ and solve the equation $2\tan^2\theta \cos\theta = 3$							
		for $0 \le \theta \le 2\pi$.							

SECTION – C (Marks 32)

Note: Attempt any **FOUR** questions. All questions carry equal marks. $(4 \times 8 = 32)$

- Q.3 Solve the system of equations by reducing its augmented matrix to the reduced echelon form: x + 2y + 3z = 3; 2x + 3y + z = 1; 3x + y + 2z = 2
- Q.4 In any triangle ABC, with usual notations, prove that:
 - (a) $a^2 = b^2 + c^2 2bc \cos \propto$
 - (b) $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin r}$

Q.5 (a) Identify the series if its nth term is
$$a_n = \frac{4}{5} \left(\frac{2}{3}\right)^{n-1}$$

- (b) What is the sum of first ten terms of the series.
- Q.6 If $y = -\frac{1}{3} + \frac{1}{3^3} + \frac{1.3}{2!} \cdot \frac{1}{3^5} + \frac{1 \cdot 3 \cdot 5}{3!} \cdot \frac{1}{3^7} + \dots$, then prove that $63y^2 + 84y + 19 = 0$
- Q.7 Prove the following trigonometric identity without using calculator/Trigonometric tables. $cos \frac{\pi}{18} \cdot cos \frac{\pi}{6} \cdot cos \frac{5\pi}{18} \cdot cos \frac{7\pi}{18} = \frac{3}{16}$
- Q.8 ABC is a right angled triangle with $m \angle B = 90^\circ$, $m \angle A = 30^\circ$ and $m \overline{AB} = 3cm$
 - (a) Solve the triangle ABC.
 - (b) Find the area (Δ) of triangle ABC.
 - (c) Find the radius (R) of circum-circle of triangle ABC.
 - (d) Find the radius (r) of in-circle of triangle ABC.

MATHEMATICS HSSC-I Student Learning Outcomes Alignment Chart (National Curriculum 2000)

Sec-A	Q 1	Contents and Scope	Student Learning Outcomes
	1	Concept of complex numbers and basic operations on them	To know the additive and multiplicative identities of complex numbers and to find their additive and multiplicative Inverses.
	2	Logical proofs of the operation on sets	Introduction to the logical statements and their composition (common connectives, negation, conjunction, disjunction, conditional and bi-conditional).
	3	Determinants and their application in the study of the algebra of matrices	Concept of a determinant of a square matrix, expansion of the determinant up to order 4 (simple cases).
	4	Revision of the work done in previous classes	Solving a quadratic equation in one variable by: (a) factorization (b) completing the square and (c) quadratic formula
	5	Application of Remainder Theorem in the solution of equations	To apply the Remainder Theorem in finding one or two rational roots of cubic and quadratic equations, to use synthetic division in finding depressed equations for solving them.
	6	Partial Fractions	To reduce a fraction into partial fractions when its denominator consists of (a) Linear Factors
	7	Arithmetic Series	To establish the formula for finding the sum up to n -terms of an arithmetic series and be able to apply this formula.
	8	Geometric Mean	To find the Geometric Mean and insert n- G.Ms between two positive real numbers and be able to solve problems based on them.
	9	Permutations	To understand the meaning of permutation of n different things taken r at a time and know the notation ${}^{n}P_{r}$ or P (n, r).
	10	Probability (Basic concepts and estimation of probability)	To know the formula for finding the probability.
	11	Binomial Theorem for negative integral and rational indices	To apply the theorem in the expansion of the binomial expressions with rational indices as infinite series and arithmetical computations.
	12	Binomial Theorem for positive integral index	To state and prove the binomial theorem for positive integral index, find the number of terms

			and general terms in the expansion of $(a + b)^n$					
			and apply it to expand positive integral powers					
			of the binomials and find their particular terms					
			(without expansion).					
			To establish the following relations between the					
			trigonometric ratios;					
			$cosec \ \theta = 1/sin \ \theta,$					
			$\sec \theta = 1/\cos \theta$,					
			$\cot \theta = 1/\tan \theta$,					
			$tan \theta = sin \theta / cos \theta$					
	13	Trigonometric Functions	$\cot \theta = \cos \theta / \sin \theta$,					
		C	$sin2 \theta + cos2 \theta = 1$,					
			$1 + tan2 \theta = sec2 \theta$ and					
			$1 + \cot 2 \theta = \csc 2 \theta$:					
			To be able to apply the above mentioned					
			relations in					
			b)proving the trigonometric identities.					
			oproving de argonometre identities.					
		Fundamental formulas of	b) To establish the formula					
	14	sum and difference of two	$cos(\alpha - \beta) = cos\alpha cos\beta + sin\alpha sin\beta$ and deduction					
	14	angles and their	there from for finding the sum and difference					
		applications	of the trigonometric ratios.					
		Trigonometric ratios of	To find the values the trigonometric ratios of					
	15	double angles and half	To find the values the trigonometric ratios of double and half the angles and apply them					
		angles	double and half the angles and apply them.					
			To know the domains and ranges of the					
		Periods of trigonometric	trigonometric functions to have the concept					
	16	functions	of period of a trigonometric function and the					
			period of the basic trigonometric functions.					
	<u> </u>		period of the custe trigonometric functions.					
			To find the radii of					
			a)Circum circle					
	17	Radii of circles connected	b)In circle					
	1,	with triangles	c)Escribed circle of triangles and to solve					
			problems involving these radii.					
			r					
			To know the definition of inverse trigonometric					
		Inverse trigonometric	functions their domains and ranges; to know					
	18	functions	the general and principle trigonometric					
			functions their inverses and their values.					
			To know the definition of inverse trigonometric					
			functions their domains and ranges; to know the					
			general and principle trigonometric functions					
	19	Inverse trigonometric functions	their inverses and their values; development of					
			formulas for inverse trigonometric functions and					
			their application.					
	20	Solution of trigonomotric	**					
	20	Solution of trigonometric	To solve trigonometric equations and check their					

		equations	answers by substitution in the given equations so					
			as to discard extraneous roots and to make use of					
			the period of trigonometric functions for finding					
			the general solution of the equations.					
			To know the four binary operations on complex					
		Concept of complex	numbers and their properties.					
Sec-B	Q 2 i	numbers and basic	To know the conjugate and modulus of a					
	_	operations on them.	complex number					
		Conjugate and its properties	z = x + iy.					
		Logical proofs of the operation	To give formal proofs of the commutative,					
	ii	on sets	associative and distributive properties of union					
			and intersection.					
		Determinants and their	Expansion of the determinants up to					
	iii	application in the study of	order 4. The use of properties of					
		algebra of matrices	determinants.					
		Solution of equations reducible	To solve equation reducible to quadratic					
	iv	to quadratic equations in one	equations in one variable.					
		variable						
		Partial Fractions	To reduce a fraction in to partial fractions when its					
	V	Partial Fractions	denominator consists of (c) non- repeated quadratic factors.					
			To know the domain and ranges of the trigonometric functions to have the concept of					
	vi		period of a trigonometric function and the					
			period of a trigonometric function and the periods of the basic trigonometric functions.					
			To find the nth term of an arithmetic progression					
	vii	Arithmetic Sequence	(A.P) and solve problems pertaining to the terms of					
	, 11	A mannetie Bequence	an A.P.					
	viii	Combinations	To apply combination in solving problems.					
			To establish the formula for ${}^{n}P_{r}$ and apply it in					
			solving problems of finding the number of					
			arrangements of n things taken r at a					
	ix	Permutations	time(when all the n things are different and					
			when some of them are alike) and the					
		6	arrangements of different things around a					
			circle.					
		Binomial theorem for	To apply the theorem in the expansion of the					
	X	negative integral and	binomial expressions with rational indices as					
		rational indices	infinite series and arithmetical computations.					
		Relation between the length	To establish the rule $\theta = \frac{l}{r}$, where r is the					
	xi	of an arc of a circle and the	radius of the circle, l is the length of the arc					
		circular measure of its	•					
		circular measure of its	and θ is the circular measure of the central					
		central angle	and θ is the circular measure of the central angle of the arc.					

[1					
	xii	Sum, difference and product of trigonometric ratios	To find the formulas for the following: $sin\alpha \pm sin\beta$; $cos\alpha \pm cos\beta$; $2sin\alpha cos\beta$; $2cos\alpha sin\beta$; $2cos\alpha cos\beta$ and $-2sin\alpha sin\beta$ and to be able to apply.					
	xiii	Graphs of trigonometric functions	To draw the graphs of basic trigonometric functions in the domains ranging from -2π to 2π and know that the graphs of these trigonometric functions are repeated depending upon the period of the functions.					
	xiv	Radii of circles connected with triangles	To find the radii of a)Circum circle b)In circle c)Escribed circle of triangles and to solve problems involving these radii.					
	XV	Inverse trigonometric functions	To know the definition of inverse trigonometric functions their domains and ranges; to know the general and principle trigonometric functions their inverses and their values; development of formulas for inverse trigonometric functions and their applicants; to draw the graphs of inverse trigonometric functions.					
	xvi	Solution of trigonometric functions	To solve trigonometric equations and check their answers by substitution in the given equations so as to discard extraneous roots and to make use of the period of trigonometric functions for finding the general solution of the equations.					
Sec-C	Q.3	Solvingsimultaneousline ar system of equations	To be able to solve a systems of linear non- homogeneous equations by the use of (b) echelon and reduced echelon form.					
	4	Cosine formula Sine formula	 To establish the cosine formula and apply it in the solution of oblique triangles. To establish the sine formula to apply it in the solution of oblique triangles 					
Ŕ	5	Sequence and Series ► Introduction	To have the concept of a sequence/progression, its term and its domain, different types of sequences with examples to distinguish between arithmetic, geometric and harmonic sequences; and to determine the sequence when its nth term is known.					
	6	Binomial Series	To be able to identify the given series as binomial expansion and hence find the sum of the series.					
	7	Sum, difference and product of the trigonometric ratios	To find the formulas for the following: $sin\alpha \pm sin\beta$; $cos\alpha \pm cos\beta$; $2sin\alpha cos\beta$; $2cos\alpha sin\beta$;					

			$2\cos\alpha\cos\beta$ and $-2\sin\alpha\sin\beta$
	8	Heights and distances	and to be able to apply.To be able to use the solution of right triangles in solving the problems of heights and distances.To find the radii of a) Circum circle b) In circle of triangles and to solve problems involving these radii.
4	C		
Q	7		
R	7		

MATHEMATICS HSSC-I

Table of Specifications

Topics	1. Number Systems	2. Sets, Functions and Groups	3. Matrices and Determinants	4. Quadratic Equations	5. Partial Fractions	6. Sequences and Series	7. Permutation, Combinationand Probability	8. Mathematical Inductions and Binomial Theorem	9. Fundamentals of Trigonometry	10. Trigonometric Identities	11. Fundamentals of Trigonometry	12. Application of Trigonometry	13. Inverse Trigonometric Functions		Total marks for each assessment objective	% age
Knowledge based	1(1)(1) 2(i)(4)	1(2)(1) 2(ii)(4)			1(6)(1)	5(8)	1(9)(1) 1(10)(1)	1(11)(1)	S		2(vi)(4)	1(17)(1) 4(8)	1(18)(1)		36	27.2%
Understanding based			1(3)(1) 2(iii)(4) 3(8)	1(4)(1) 2(iv)(4)	2(v)(4)	1(8)(1) 2(vii)(4)		1(12)(1) 6(8)	2(xi)(4)	1(14)(1) 1(15)(1) 2(xii)(4)	1(16)(1)	2(xiv)(4) 8(8)	1(19)(1) 2(xv)(4)	1(20)(1) 2(xvi)(4)	69	52.3%
Application based				1(5)(1)		1(7)(1)	2(viii)(4) 2(ix)(4)	2(x)(4)	1(13)(1)	7(8)	2(xiii)(4)				27	20.5%
Total marks for each topic	05	05	13	06	05	14	10	14	05	14	09	21	06	05	132	100%

KEY:

: 1(1)(1) Question No. (Part No.) (Allocated Marks)