Version No.					ROLL NUMBER						
0	0	0	0	0	0	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	1	1	
2	2	2	2	2	2	2	2	2	2	2	
3	3	3	3	3	3	3	3	3	3	3	Answer Sheet No
4	4	4	4	4	4	4	4	4	4	4	
(5)	(5)	(5)	(5)	5	5	(5)	(5)	(5)	(5)	(5)	Sign. of Candidate
6	6	6	6	6	6	6	6	6	6	6	
7	7	7	7	7	7	7	7	7	7	7	
8	8	8	8	8	8	8	8	8	8	8	Sign. of Invigilator
9	9	9	9	9	9	9	9	9	9	9	
				Cl							
								`		′	
			-	•	-						ž v
) `		
Ų.1									_		
	(1)									110 W 11	ing reaction, predict the maximum
							2Fe	+ 3C		2	male of Eq. ()
	0 0										
	(2)	,									
	(2)		_			·					tom
			3.	The nun	nber c	of neu	trons	in ta	rget n	netal a	atom
											0
	(3)		Categor	ize the j	polar :	mole	cule a	mong	g the f	follow	ving: H
			4.	cı—Č	 C—CI		\bigcirc		В.	H	1—C−H
				C	:1		\circ		2.		H
			_								
X		(C.	H—N.	-н		\bigcirc		D.	0	0=C=0
	(4)								_		
		(C. I	Low pre	essure	and l	nigh t	empe	rature	e	Õ
		I	D. I	Low ten	nperat	ture a				e	0
							ı ag	,5 1 0.			

(5)	A. Force of attractionB. Elastic collisions bC. Vander Waal's force	B. Elastic collisions between their molecules C. Vander Waal's forces between their molecules											
(6)	Label which of the following valence shell electronic configurations are correct EXCEPT :												
	A.	<u></u> В.	2s 2px 2py 2pz	0									
	C. 2s 2px 2py 2pz	O D.	1 1 2s 2px 2py2pz	0/									
(7)	Light emitted or absorbed in form of energy packets called photons. What is the energy of photon?												
	A. $E=hC$ C. $E=h\lambda$	○ B.○ D.	$E = hc/\lambda$ $E = c/\lambda$	0									
(8)	Predict which one has high A. Helium (He) C. Argon (Ar)	nest boiling po B. D.	Neon (Ne)	;; ()									
(9)	Identify the temperature at A. 34°C C. 14°C	which water B. D.	$24^{\circ}\mathrm{C}$	nsity:									
(10)	Analyze what is true for the following chemical reaction? $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$												
	$\begin{array}{ll} A. & k_p > k_c \\ C. & k_p = k_n \end{array}$	○ B.○ D.	$\begin{aligned} k_n &< k_c \\ k_p &> k_n \end{aligned}$	0									
(11)	An acid X considered to be constant (K _a) is:	e stronger one	e, when the value of its Γ	Dissociation									
	A. 1.8×10^{-16} C. 1.0×10^{9}	B.D.		0									
(12)	For a chemical reaction A Rate = $k[O_3]^2[O_2]^{-1}$	the rate equat	ion is given below:										
0)	Distinguish the INCORRI A. The rate of reaction kept constant.		nt about the reaction A : ur time when $[O_3]$ is dou	bled and [O ₂] is									
	-	The rate of reaction increases twice when $[O_2]$ is doubled and $[O_3]$ is kept											
	constant.		f when $[O_2]$ is doubled a	and $[O_3]$ is kept									
(12)	D. The overall order of Identify the temperature at			or is maximum at:									
(13)	Identify the temperature at A. 80°C C. 100°C	B. O D. Page 2 of 3	90°C										

(14)	If the following reaction is performed at STP, predict which one of the following statement is correct for this reaction?												
		$CO_2(g) \longrightarrow C_{(s)} + O_{2(g)}$											
	A.	ΔH is positive and the temperature of surrounding is increased.											
	B.												
	C.	ΔH is negative and the temperature of surrounding is increased.											
	D.	ΔH is negative and the temperature of surrounding is decreased.	000										
(15)	In the	following reaction, quote the correct statement:	Co										
	Ca(s)	$+ Cl_2(g) \longrightarrow CaCl_2$											
	A.	Ca is oxidizing agent											
	C.	Ca is reducing agent \bigcirc D. CaCl ₂ is reducing agent	0										
(16)	Consider the following general chemical reaction at equilibrium. If it's $Kc = 1$, what is the best statement for the chemical reaction.												
	Reactant Product												
	A.	Concentration of reactant = Concentration of product											
	В.	Concentration of reactant > Concentration of product											
	C.	Rate of forward reaction > Rate of backward reaction	$\widetilde{\bigcirc}$										
	D.	Rate of forward reaction < Rate of backward reaction	$\widetilde{\bigcirc}$										
			\circ										
(17)		n two atoms bond with each other through overlapping of their sp ³ hals. Predict which one of the following statements best describes the	•										
		bond between these atoms?											
	A.	This is a Pi (π) covalent bond	\bigcirc										
	B.	This is a Sigma (σ) covalent bond	$\tilde{\bigcirc}$										
	C.	This is ionic bond	$\widetilde{\bigcirc}$										
	D.	This is hydrogen bond.	Ŏ										

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

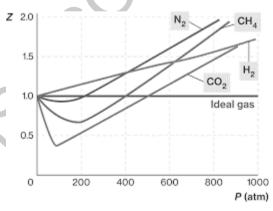
Time allowed: 2.35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$


i. 8.7X10²⁴ H_2 molecules are produced by the reaction of zinc and 30%W/W H_2SO_4 solution of density 1.25g/ cm³. For the following reaction: $Zn_{(s)} + H_2SO_{4(aq)} \longrightarrow H_{2(g)} + ZnSO_{4(s)}$

Calculate the volume of sulphuric acid solution used.? (Zn = 65, O = 16, S = 32, H = 1 g/mol)

- ii. Briefly describe the miscibility of phenol and water system.
- iii. Describe briefly Zeeman and Stark effect on Bohr atomic model.
- iv. List the quantum numbers value of 5p.
- v. Interpret the change in the bond energy in the following.

Bonds	C-F	C-Cl	C-Br	C-I
Energy KJ/mol	485	329	276	240

- vi. Demonstrate the values of bond pair, lone pair and total electron pair in AsH₃ by VSEPR theory, and draw its structure.
- vii. Show by derivation the unit of density in the expression $d = \frac{PM}{RT}$ when R = 0.0821atm $dm^3mol^{-1}k^{-1}$.
- viii. Deviation from ideal behavior is shown in following graph at 25°C. Sketch the deviation from ideal behavior at 5°C.

- ix. A gas collected over water at 10^oC and 873 torr. If gas occupies 90cm³, calculate the volume of dry gas at STP when aqueous tension is 9.2torr.
- x. Describe the surface tension of the given solvents in term of intermolecular forces.

Solvent	Surface Tension
Water (H ₂ O)	7.275×10^2
Hexane (C_6H_{14})	1.84×10^2

- xi. Ice floats at the surface of the water. Tabulate its three advantages.
- xiii. Calculate p^H of 1x10⁻³M Fe(OH)₃.
- xiv. Briefly explain buffer action with the help of CH₃COOH and CH₃COONa.
- xv. Discuss briefly the colligative property of C₁₂H₂₂O₁₁ and CO(NH₂)₂.
- xvi. Prove first law of thermodynamics and show that $\Delta E = q_v$.
- xvii. Differentiate between exothermic and endothermic with thermochemical equations.
- xviii. Briefly describe cleavage planes and habit of crystal.
- xix. Complete the reaction on the bases of reduction potentials of $Pb^{+2}/Pb = -0.36v$ and $Fe^{+2}/Fe = -0.44v$ $PbSO_4 + Fe \longrightarrow$
- xx. Calculate the energy of ${}_{3}^{7}Li^{+2}$ for Balmer series when electron jumps from n=5.

SECTION - C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$

- Q.3 a. $CH_{4(g)} + 4Cl_{2(g)} \rightleftharpoons CCl_{4(l)} + 4HCl_{(g)}$ Derive Kc expression at equilibrium of given reaction. (06)
 - b. Describe that increase in collision energy by increasing the temperature can improve the collision frequency. (3+2+2)
- Q.4 a. Under what conditions synthesis of ammonia will give maximum yield by Haber's process. (2+2+2)
 - b. Describe dissolution of KCl and $C_6H_{12}O_6$ in water (4+3)
- Q.5 a. Demonstrate the reactions that occur in lead storage battery when it is recharged.
 - b. Sulphuric acid can be prepared by contact process using following reactions when one ton (1000kg) sulphur is used then how much SO₃ will be produced and how much oxygen is used? (3+4)

$$S + O_2$$
 \longrightarrow SO_2 $2SO_2 + O_2$ \longrightarrow $2SO_3$ $(S=32, O=16)$

* * * * *

CHEMISTRY HSSC-I (3rd Set) Student Learning Outcomes Alignment Chart

SECTION A

0.1

- (1) Construct mole ratio from balanced equations for use as conversion factor in stochiometric problems.
- (2) Explain production, properties, types and uses of X-rays.
- (3) Explain the sequence of filling of electrons in many electron atoms.
- (4) Define photon as a unit of radiation energy.
- (5) Predict the molecular polarity from the shapes of molecules atom. (Analyzing)
- (6) Describe the features of sigma and pi bonds.
- (7) Distinguish between real and ideal gases.
- (8) Use Kinetic Theory to explain gas pressure.
- (9) Explain applications of dipole-dipole forces, hydrogen bonding and London forces.
- (10) Explain the low density and high heat of fusion of ice.
- (11) Define and explain molecular and metallic solids.
- (12) Relate the equilibrium expression in terms of concentration, partial pressure, number of moles and mole fraction.
- (13) State the necessary conditions for equilibrium and the ways that equilibrium can be recognized.
- (14) Use the extent of ionization and the acid dissociation constant, Ka, to distinguish between strong and weak acids.
- (15) Explain and use the terms rate of reaction, rate equation, order of reaction, rate constant and rate determining step.
- (16) Explain the effect of temperature on solubility and interpret the solubility graph.
- (17) Classify reactions as exothermic or endothermic.
- (18) Give the characteristics of a Redox reaction.

SECTION-B

Q.2

- i. Perform stoichiometric calculations with balanced equations using moles, representative particles, masses and volumes of gases (at STP).
- ii. Explain the nature of solutions in liquid phase giving examples of completely miscible, partially miscible and immiscible liquid-liquid solutions.
- iii. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom
- iv. Distinguish among principal energy levels, energy sub levels, and atomic orbitals.
- v. Define bond energies and explain how they can be used to compare bond strengths of different chemical bonds
- vi. Use VSEPR and VBT theories to describe the shapes of simple covalent molecules.
- vii. Derive Ideal Gas Equation using Boyle's, Charles' and Avogadro's law.
- viii. Explain why real gases deviate from the gas laws
- ix. Derive Ideal Gas Equation using Boyle's, Charles' and Avogadro's law
- x. Explain physical properties of liquids such as evaporation, vapour pressure, boiling point, viscosity and surface tension
- xi. Use the concept of Hydrogen bonding to explain the following properties of water: high surface tension, high specific heat, low vapor pressure, high heat of vaporization, and

- high boiling point. And anomalous behavior of water when its density shows maximum at 4 degree centigrade
- xii. Define salts, conjugate acids and conjugate bases.
- xiii. Explain ionization constant of water and calculate pH and pOH in aqueous medium using given Kw values.
- xiv. Define a buffer, and show with equations how a buffer system works.
- xv. Define the terms colligative. Explain on a particle basis how the addition of a solute to a pure solvent causes an elevation of the boiling point and depression of the freezing point of the resultant solution.
- xvi. Relate change in internal energy of a system with thermal energy at constant temperature and constant pressure.
- xvii. Classify reactions as exothermic or endothermic.
- xviii. Describe properties of crystalline solids like geometrical shape, melting point, cleavage planes, habit of a crystal, crystal growth, anisotropy, symmetry, isomorphism, polymorphism, allotropy and transition temperature.
- xix. Use the activity series of metals to predict the products of single replacement reactions.
- xx. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom.

SECTION-C

- **Q.3** a. Write the equilibrium expression for a given chemical reaction.
 - b. Use the collision theory to explain how the rate of a chemical reaction is influenced by the temperature, concentration, size of molecules
- **Q.4** a. Explain industrial applications of Le Chatelier's Principle using Haber's process as an example.
 - b. Distinguish between the solvation of ionic species and molecular substances.
- **Q.5** a. Explain how a lead storage battery produces electricity.
 - b. Perform stoichiometric calculations with balanced equations using moles, representative particles, masses and volumes of gases (at STP).

CHEMISTRY HSSC-I (3rd Set)

TABLE OF SPECIFICATION

Topics/S ubtopics		Atomic structure 2	Theories of covalent bonding 3	States of matter- Gases 4	States of matter- Liquids 5	States of matter-Solids 6	Chemical Equilibriu m 7	Acids Bases and salts 8	Chemical kinetics 9	Solutions and colloids 10	Thermoche mistry 11	Electro chemistry 12	Total marks for each Assessme nt Objective	%age
(Knowle dge based)		1(2)(1) 1(6)(1) 1(7)(1) 2 iii(3) 2 iv(3)	1(17)(1)	1(4)(1) 2 viii(3)	2 x(3) 2 xi(3)	2 xviii(3)	1(16)(1)	1(11)(1)	3 b(7)	2 ii(3)		1(15)(1)	36	31%
(Underst anding based)			2 v(3) 2 vi(3)	1(5)(1) 2 vii(3)	1(8)(1)	1(9)(1)	3 a(6) 4 a(6)	2 xii(3) 2 xiv(3)		1(13)(1) 2 xv(3) 4 b(7)	1(14)(1) 2 xvi(3) 2 xvii(3)	2 xix(3) 5 a(6)	57	49.1%
(Applicat ion based)	1(1)(1) 2 i(3) 5 b(7)	2 xx(3)	1(3)(1)	2 ix(3)			1(10)(1)	2 xiii(3)	1(12)(1)				23	19.8%
Total marks for each Topic/Su btopic	11	12	08	11	07	04	14	10	08	14	07	10	116	100%

KEY:

1(1)(1)

Question No. (Part No.) (Allocated Marks)

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult