Version No.			R	OLL	NU	MBE	CR								
0	0	0	0		0	0	0	0	0	0	0				
1	1	1	1		1	1	1	1	1	1	1				
2	2	2	2		2	2	2	2	2	2	2				
3	3	3	3		3	3	3	3	3	3	3	Ansv	wer Sheet No		
4	4	4	4		4	4	4	4	4	4	4				
(5)	5	(5)	5		(5)	5	5	(5)	(5)	(5)	(5)			0-	
6	6	6	6		6	6	6	6	6	6	6	Sign	. of Candidate		
7	7	7	7		7	7	7	7	7	7	7				
8	8	8	8		8	8	8	8	8	8	8	Sian	. of Invigilator		
9	9	9	9		9	9	9	9	9	9	9	0.9			
					~-		~			. ~ ~ .	~ -	and a	O		
					Cl							(2 nd S	Set)		
							SEC' Time								
			-			ll pai	rts of	this	secti	on a	re to	be ans	wered on this pa	-	
				-				_			_		owed. Do not use	e lead pencil.	
Q.1		1 1111						_					s one mark.		
	1.		A.	least II N ₂ C		er or	HOIG	ecuie	s are	pres	ent 11)	n 30g o B.	NO	\bigcirc	
			C.	NO						Č)	D.	N_2O_3	\circ	
	2.		The 1	largest	hou	nd ai	nale i	is pre	ecent	in.					
	2.		A.	CH		iiu ai	iigic	is pre	SCIII)	B.	SCl_2	\bigcirc	
			C.	NH	.3					Č)	D.	BCl ₃	Ö	
	3.		The o	differe	nce i	in an	gular	mor	nentı	ım o	f elec	ctron w	hich jumps from	3rd orbit to 6th	
			orbit	of hyd	droge	en at	om w	ill b	e:						
			A.	3 ($\left(\frac{h}{2\pi}\right)$					\subset)	B.	$3\left(\frac{h}{\pi}\right)$	\bigcirc	
			C.	6(-	$\left(\frac{h}{2\pi}\right)$					\subset)	D.	$6\left(\frac{h}{\pi}\right)$	\bigcirc	
			*****	1	2H)	C			1		1 11		(11)		
	4.		Which	ch one K ₂ S		ne fo	llowı	ng sa	alts tu	ırns 1	red II	tmus b B.	lue upon hydroly NaCl	′S1S?	
			C.		CO_3					\mathcal{C})	D.	NH ₄ Cl	\circ	
	5		Idant	ify the		+ of #	ota a	omata	mt (L	7) for	. +h a	~i***~~ #	and in	<u> </u>	
	5.	1	2A+]	•	e um	ι οι ι	ate c	onsta →	,	duct		when	reaction: Rate= K [A]	[B]	
) `	A.	s ⁻¹						\subset)	B.	mol dm ⁻³ s ⁻¹		
</td <td></td> <td></td> <td>C.</td> <td>dm³</td> <td>³ mol</td> <td>l⁻¹ s -</td> <td>1</td> <td></td> <td></td> <td>\subset</td> <td>)</td> <td>D.</td> <td>$dm^6 mol^{-2} s^{-1}$</td> <td>\bigcirc</td>			C.	dm ³	³ mol	l ⁻¹ s -	1			\subset)	D.	$dm^6 mol^{-2} s^{-1}$	\bigcirc	
	6.		The 3	3rd lin	e in	the E	Balme	er Se	ries c	of Bo	hr's l	Hydrog	gen spectrum is d	lue to the	
			trans	ition o	of ele	ctroi	1:					, ,	-		
			A.				ll to 1						0		
			B. C.				ll to 2 ll to 3						\bigcirc		
			C. D.				11 to 2						0		
				110		5110		_ 51		Da-	. 1 -	c 2	\circ		

	/.		cipal quantum number $(n) = 3$	s, the to	tal magi	netic quantum number	s (m)									
		will be A.	3	\bigcirc	D	6	\bigcirc									
		C.	9	\bigcirc	B. D.	6 12	\bigcirc									
		C.	,	\cup	D .	12	\cup									
	8.	A gas.	x diffuses four times faster that	an SO ₂	_	_	will be:									
		A.	2 g/m	\bigcirc	B.	4 g/m	Ō									
		C.	16 g/m	\bigcirc	D.	64 g/m	\bigcirc									
	0	A 1	1 41 4 1 37 1 33	7 119	,•	an^2	D/II)									
	9.		l gas that obeys Vander W	all's e	quation	$(p+\frac{1}{v^2}+(v-nb))$	= nRI									
			es like an ideal gas when													
		A.	'a' is large & 'b' is small													
		B.	'a' is small & 'b' is large				,									
		C.	'a' & 'b' are large													
		D.	'a' & 'b' are small			0										
	10.	NaCl is a crystalline solid which has face centered cubic structure. The Na ⁺ ion at														
		the fac	e of the unit cell is shared by:													
		A.	Two unit cells	\bigcirc	B.	Four unit cells	\bigcirc									
		C.	Six unit cell	\bigcirc	D.	Eight unit cells	\bigcirc									
	11	The tra	ansition temperature of tin gre	v and ti	n white	is:										
	11.	A.	13.2°C		B.	18°C	\bigcirc									
		C.	95.5°C	\tilde{O}	D.	128.5°C	$\tilde{\bigcirc}$									
							\circ									
	12.		por pressure of a liquid deper	ids upoi												
		A.	Nature of liquid	\bigcirc	В.	Temperature	\bigcirc									
		C.	Inter molecular forces		D.	Amount of liquid	\bigcirc									
	13.	The standard electrode potential of different elements are measured with the help														
		of Standard Hydrogen Electrode (SHE). The standard conditions at which SHE is														
		operate	ed are:													
		A.	2.00M HCl solution, 1 atm F			\bigcirc										
		B.	1.00M HCl solution, 1 atm F	I_2 at 29	8 K.	\bigcirc										
		C.	1.00M HCl solution, 2 atm F	\mathbf{I}_2 at 0 \mathbf{I}_2	ζ.	\bigcirc										
		D.	1.00M HCl solution, 1 atm F	H_2 at 27.	3 K.	\bigcirc										
	14	20 gra	ams of glucose dissolved in	water 1	o nrens	are a solution of 10	% w / v									
	1 1.	_	ntration. The volume of the so			are a solution of 10	70 vv 7 v									
		A.	100 cm ³		В.	200 cm^3	\bigcirc									
		C .	2000 cm^3	$\tilde{\bigcirc}$	D.	2500cm ³	$\tilde{\bigcirc}$									
	1.5	1 00		· · · ·	. T		· ·									
	15.		Fer solution resists the change	-	-	•	_									
	- 1	acid or base. Which one of the following is an example of a buffer solution? A. Mixture of NH ₄ Cl _(aq) and NH ₄ NO _{3(aq)}														
	2	B.	Mixture of NH ₄ Cl _(aq) and Na		q)											
		Б. С.	Mixture of CH ₃ COONa _(aq) and Na		CL.											
		D.	Mixture of NH ₄ Cl _(aq) and NH													
>	9.	D.	withture of 14114CI (aq)and 141	14 011 (aq)	\cup										
9.10.11.12.13.	16.		alpy of neutralization of the g			a) is -57.3 k J / mol. W	hat									
			be the enthalpy change of rea													
		(a)	$KOH_{(aq)} + HCl_{(aq)} \rightarrow 1$			`										
		(b)	$H_2SO_{4 (aq)} + 2KOH_{(aq)} \rightarrow I$	√ 2 5∪ 4(a	-											
		A. C.	-28.65 k J -171.9 k J	\bigcirc	В. D.	-114.6 k J -229.2 k J	\bigcirc									
		◡.	1 / 1 · / IN J	\ /	₽ .	447.4 IN J	\ /									

	unit of Kc for the f $f(s) + 4H_2O(g)$ No unit $f(s) + 4H_2O(g)$ No unit $f(s) + 4H_2O(g)$				n will be: n one is the unit of Kc? mole ² dm ⁻³ mol ⁻¹ dm ³	
						C
					R	
					Q'	
		<	2 P	?		
		2				
5						

Federal Board HSSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.35 hours Total Marks: 68

Note: Answer any fourteen parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 42)

Q.2 Attempt any FOURTEEN parts from the following. All parts carry equal marks.

 $(14 \times 3 = 42)$

- i. Justify the following:
 - a. One mole of CO₂, CH₄ & H₂O has different masses but have same number of molecules.
 - b. Energy of 3d sub shell is greater than 4s.
- ii. For the following reaction:

 $\begin{array}{c} Ca(OH)_{2(aq)} + H_2SO_{4(aq)} & \hspace{2cm} 2 \; H_2O_{(1)} + \; CaSO_{4(s)} \\ Calculate \;\; the \;\; mass \;\; of \;\; calcium \;\; hydroxide \;\; needed \;\; to \;\; produce \;\; 680g \;\; of \;\; calcium \;\; sulphate? \\ & (Ca = 40, \, O = 16, \, S = 32, \, H = 1 \;g/mol) \end{array}$

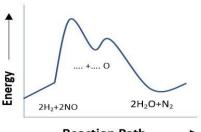
iii. Se²⁻ selenide and SO_3^{2-} Sulphite ions react spontaneously $2Se^{2-} + 2SO_3^{2-} + 3H_2O \longrightarrow 2Se + 6OH^- + S_2O_3$ E^o cell = 0.35v If E_o Sulphite is -0.57 v, calculate E^o for selenium.

- iv. What is metallic bond? Describe electron sea theory.
- v. How Mosley used x-rays Spectrum to predict the atomic number of elements? Give one use of x-rays in medical field and chemistry.
- vi. The species H₂O, NH₃ and CH₄ have bond angles of 104.5°, 107.5°, 109.5° respectively. Prove by VSEPR theory, by drawing their structures.
- vii. Briefly describe the shape of subshells when the values of l are 0, 1 & 2.
- viii. Explain the shape and polarity of H₂O on the basis of dipole moment.
- ix. State Joule Thomson Effect and give one application.
- x. Boiling point of HF (19.5°C) is low as compared to H₂O (100°C) although the electronegativity of Fluorine is greater than oxygen. Explain.
- xi. Briefly describe the factors on which London forces depend?
- xii. Give three properties of covalent crystals.
- xiii. How can you measure the depression in freezing point using Beckman's Freezing point apparatus.
- xiv. What is the oxidation numbers of the relevant elements on each side of the following equation, state which atom is oxidized and which is reduced? Show your working. 2FeCl₃ + SO₂ + 2H₂O → 2FeCl₂ + H₂SO₄ + 2HCl

- Standard enthalpy change of combustion of a substance is energy change when one mole of a substance is completely burnt in oxygen at standard conditions i.e 25 °C and 1 atm pressure. Using following standard enthalpy changes of combustion of propanol $\Delta HCO_2 = -293 \text{ KJ/ mol}$ $\Delta H H_2O = -286 \text{ KJ/mol}$ $\Delta Hc C_3H_7OH = -1560 \text{ KJ/mol}$ Calculate enthalpy change of formation of propanol.
- xvi. The dissociation constant of an acid is a measure of its strength. Derive an expression for the dissociation constant of an acid "CH₃COOH".
- xvii. In the equilibrium $PCl_5(g)$ $PCl_3(g) + Cl_2(g)$ $\Delta H = 90 \text{KJ/mol}$ predict the effect on the position of equilibrium if temperature is increased and pressure is decreased.
- xviii. Values of equilibrium constants can be calculated from measured values of concentrations or partial pressures. Write relationship between Kp and Kc in the following reactions?
 - $\begin{array}{c} COCl_{2~(g)} & \rightleftharpoons CO_{(g)} + Cl_{2}~(g) \\ N_{2(g)} + 3H_{2(g)} & \rightleftharpoons 2NH_{3~(g)} \end{array}$ (a)
 - (b)
- xix. A solution containing 0.13M potassium acetate and 0.07M acetic acid. Calculate the pH of buffer solution. The value of ionization constant for acid is 1.81x10⁻⁵.
- Calculate the molarity of 4.6% w/w solution of NaOH.

SECTION – C (Marks 26)

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 13 = 26)$


- Derive energies expression for ${}_{2}^{4}He^{+1}$ according to Bohr's atomic model. (7) **Q.3** a.
 - 40dm³ HCl (g) at STP reacts with 50g Zn which is placed in water to form ZnCl₂ b. and H₂. Calculate the mass of H₂ produced and unreacted reactant left.

$$(Zn = 65, Cl = 35.5, H = 1)$$

 $Zn + 2HCl \longrightarrow ZnCl_2 + H_2$ (3+3)

- Explain and draw stepwise Born Haber Cycle for measurement of ΔH lattice for 0.4 a. potassium chloride (KCl) by using supposed values according to the steps. (5+3)
 - Explain the potential energy diagram for the given reaction and propose reaction b. mechanism (3+2)

$$2H_2+ 2NO \longrightarrow 2H_2O+ N_2$$

$$Rate = K[H_2][NO]^2$$

Reaction Path

Define the following terms with a suitable example: i. Isomorphism Q.5 (2+2+2)a.

ii. Polymorphism

Anisotropy iii.

Summarize and illustrate the elevation of boiling point using graph. (4+3) b.

* * * * *

CHEMISTRY HSSC-I (2nd Set) Student Learning Outcomes Alignment Chart

SECTION A

Q.1

- 1. Use the mole to convert among measurements of mass, volume and number of particles.
- 2. Determine the shapes of some molecules from the number of bonded pairs and lone pairs of electrons around the central atom.
- 3. Summarize Bohr's atomic theory.
- 4. Use the concept of hydrolysis to explain why aqueous solutions of some salts are acidic or basic.
- 5. Given the order with respect to each reactant. Write the rate law of the reaction.
- 6. Relate the discrete-line spectrum of hydrogen to energy levels of electrons in the hydrogen atom.
- 7. Distinguish among principal energy levels, energy sub levels, and atomic orbitals.
- 8. State and use Graham's Law of diffusion.
- 9. Distinguish between real and ideal gases.
- 10. Explain the significance of the unit cell to the shape of the crystal using NaCl as an example.
- 11. Define and explain molecular and metallic solids.
- 12. Explain physical properties of liquids such as evaporation, vapour pressure, boiling point, viscosity and surface tension.
- 13. Define cathode, anode, electrode potential and S.H.E. (Standard Hydrogen Electrode).
- 14. Express solution concentration in terms of mass percent, molality, molarity, parts per million, billion and trillion and mole fraction.
- 15. Define a buffer, and show with equations how a buffer system works.
- 16. Use experimental data to calculate enthalpy
- 17. Write the equilibrium expression for a given chemical reaction.

SECTION B

- **Q.2**
- i. Perform stochiometric calculation with balance equation using mole and particles.
- ii. Construct mole ratio from balance equation in stochiometric calculation.
- iii. Use activity series of metal to predict the product of single replacement reaction.
- iv. Define and explain molecular and metallic solids.
- v. Explain production properties of X rays.
- vi. Determine the shape of some molecules using orbital hybridization.
- vii. Describe the concept of orbitals.
- viii. Describe how knowledge of molecular polarity can be used to explain molecules.
- ix. Distinguish between real and ideal gasses.
- x. Use the concept of Hydrogen bonding to explain the properties of water.
- xi. Explain applications of dipole dipole force, Hydrogen bonding and London force.
- xii. Differentiate between ionic and covalent molecular and metallic crystal solids.
- xiii. Explain on a particle bases how the addition of the solute to the pure solvent.
- xiv. Determine oxidation number of and atom in substance.
- xv. Use the experimental data to calculate heat of reaction.
- xvi. Use the extent of ionization and dissociation constant.
- xvii. State Le-Chiliter principal. Explain concentration, pressure and temperature effect
- xviii. Relate the equilibrium expression in term of concentration and pressure.
- xix. Make buffer solution and explain how such solution maintain PH.
- xx. Express solution concentration in term of molality.

SECTION C

- **Q.3** a. Use Bohr atomic model for calculating radii of orbits.
 - b. Perform Stoichiometric calculation with balanced equation using moles.
- **Q.4** a. Apply Hesses law to construct simple energy cycle.
 - b. Give the potential energy diagram for the reaction. Discus reaction mechanism.
- **Q.5** a. Given the order with respect to each reactant write the rate law for the reaction.
 - b. Describe the physical and chemical properties of molecules.

CHEMISTRY HSSC-I (2nd Set)

TABLE OF SPECIFICATION

Subject: Chemistry			Paper: Model 2			Class\Level HSSC-I				Year 2021	-22		Code		
Topics/	Stoichiom	Atomic	Theories of	States of	States of	Stat		Chemical	Acids	Chemic	Solution	Thermoc	Electro	Total	%age
Subtop	etry	structur	covalent	matter-	matter-	mat		Equilibri	Bases	al	s and	hemistry	chemis	marks for	of
ics	1	e	bonding	Gases	Liquids	Soli	ds	um	and	kinetics	colloids	11	try	each	cogniti
		2	3	4	5	6		7	salts	9	10		12	Assessmen	ve
				l		<u> </u>			8					t Objective	level
/TT 1		ı	T		lysis of Quest	tions (it objectives		1		Laa	1 20 411
(Knowl				2ix(03)	1xii(01)		1x(01)	1xvii(0	1iv(01)		2xiii(03)		1xiii(01	33	28.4%
edge							1xi(01)	1)	2xvi(03))		
based)							2iv(03)	2xviii(0					2xiv(03		
							2xii(03) 5a(06)	3))		
							3a(00)								
(Under	2i(03)	1iii(01)	1ii(01)	1viii(01)	2xi(03)			2xvii(0	1xv(01)	1v(01)	5b(07)	1xvi(01		60	51.7%
standin	21(00)	1vi(01)	2vi(03)	1ix(01)	2x(03)			3)	(61)	4b(05)	00(07))			011770
g		1vii(01)	2viii(03)	()	(11)					(,		4a(08)			
based)		2v(03)													
		3a(07)						\wedge							
		2vii(03)						$\langle \mathcal{I} \rangle$							
(Applic	1i(01)								2xix(03)		1xiv(01)	2xv(03)	2iii(03)	23	19.8%
ation	2ii(03)										2xx(03)				
based)	3b(06)						/,\V								
Total	13	16	7	5	7		14	7	8	6	14	12	7	116	100%
marks			,		<i>'</i>			,	~		1	1-2		110	10070
for							7								
each															
Topic/S						\ /									
ubtopic															

KEY:

1(1)1

Question No (Part No.) Allocated Marks

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult