Paper 2017(Supp)

1.	The so	plution set of equal $\{\pm 4\}$	ation, (b)	$4x^2 - 16 = 0$ is: $\{4\}$	(c)	{±2}	(d)	±2
2.	If α, β (a)	are the roots of $\frac{5}{3}$	3x ² + (b)	$5x - 2 = 0$, then " $\alpha + \frac{3}{5}$	⊦ β" is <mark>(c)</mark>	$\frac{-5}{3}$	(d)	$\frac{-2}{3}$
3.	Roots <mark>(a)</mark>	of the equation ² Real, equal		4x + 1 = 0 are: Real, unequal	(c)	Imaginary	(d)	Irrational
4.	Find 'x (a)	c' in proportion 4 $\frac{75}{4}$		4	(c)	$\frac{3}{4}$	(d)	12
5.	(a)	$\frac{xy}{v}$	(b)		(c)	xvy	(d)	$\frac{x}{vy}$
6.7.	(a) If num	$\frac{A}{x+1} + \frac{B}{x^2+2}$ ber of elements	(b)	are of the form: $\frac{A}{x+1} + \frac{Bx+C}{x^2+2}$ A is '3' and in set B is		2012 2012		# · I
	$A \times B$ (a)	2 ⁸	(b)	2^3	(c)	2 ⁶	(d)	2^2
8.	A histo (a)	ogram is a set of Squares	adjad <mark>(b)</mark>	ent: Rectangles	(c)	Circles	(d)	Triangles
9.	The ob (a)	oservations that of Deciles	divide <mark>(b)</mark>	a data set into four e Quartiles		parts are called: Percentile	(d)	Medians
10.	$\frac{1}{1+sin\theta}$	$+\frac{1}{1-\sin\theta}$ is equ	ıal to:					
	(a) 2	$sec^2\theta$	(b)	$2cos^2\theta$	(c)	$sec^2\theta$	(d)	$cos\theta$
11.	Locus (a)	of a point in a pl Radius	ane e (b)	quidistant from a fixed Diameter	d poin (c)	t is called: Circumference	(d)	Circle
12.	A line (a)	which has only c Sine of a circle Tangent of a ci		oint in common with a	circle (b) (d)			
13.		ngth of a chord a by the chord will		e radial segment of a	circle	are congruent, t	he ce	ntral angle
	(a)	30°	(b)	45°	(c)	60°	(d)	75°
14.	The po	ortion of a circle l Sector	oetwe (b)	en two radii and an a Segment	rc is c (c)	alled: Chord	(d)	Tangent
15.	How m (a)	nany common ta 1	ngent (b)	s can be drawn for tw 2	o toud (c)	ching circles? 3	(d)	4