Paper 2017(Supp) | 1. | The so | plution set of equal $\{\pm 4\}$ | ation,
(b) | $4x^2 - 16 = 0$ is: $\{4\}$ | (c) | {±2} | (d) | ±2 | |---------------------------------|---------------------------|---|----------------------------|---|-----------------------------|---------------------------------|-------|----------------| | 2. | If α, β (a) | are the roots of $\frac{5}{3}$ | 3x ² + (b) | $5x - 2 = 0$, then " $\alpha + \frac{3}{5}$ | ⊦ β" is
<mark>(c)</mark> | $\frac{-5}{3}$ | (d) | $\frac{-2}{3}$ | | 3. | Roots
<mark>(a)</mark> | of the equation ²
Real, equal | | 4x + 1 = 0 are:
Real, unequal | (c) | Imaginary | (d) | Irrational | | 4. | Find 'x
(a) | c' in proportion 4 $\frac{75}{4}$ | | 4 | (c) | $\frac{3}{4}$ | (d) | 12 | | 5. | (a) | $\frac{xy}{v}$ | (b) | | (c) | xvy | (d) | $\frac{x}{vy}$ | | 6.7. | (a)
If num | $\frac{A}{x+1} + \frac{B}{x^2+2}$
ber of elements | (b) | are of the form:
$\frac{A}{x+1} + \frac{Bx+C}{x^2+2}$ A is '3' and in set B is | | 2012 2012 | | # · I | | | $A \times B$ (a) | 2 ⁸ | (b) | 2^3 | (c) | 2 ⁶ | (d) | 2^2 | | 8. | A histo
(a) | ogram is a set of
Squares | adjad
<mark>(b)</mark> | ent:
Rectangles | (c) | Circles | (d) | Triangles | | 9. | The ob
(a) | oservations that of Deciles | divide
<mark>(b)</mark> | a data set into four e
Quartiles | | parts are called:
Percentile | (d) | Medians | | 10. | $\frac{1}{1+sin\theta}$ | $+\frac{1}{1-\sin\theta}$ is equ | ıal to: | | | | | | | | (a) 2 | $sec^2\theta$ | (b) | $2cos^2\theta$ | (c) | $sec^2\theta$ | (d) | $cos\theta$ | | 11. | Locus
(a) | of a point in a pl
Radius | ane e
(b) | quidistant from a fixed
Diameter | d poin
(c) | t is called:
Circumference | (d) | Circle | | 12. | A line (a) | which has only c
Sine of a circle
Tangent of a ci | | oint in common with a | circle
(b)
(d) | | | | | 13. | | ngth of a chord a
by the chord will | | e radial segment of a | circle | are congruent, t | he ce | ntral angle | | | (a) | 30° | (b) | 45° | (c) | 60° | (d) | 75° | | 14. | The po | ortion of a circle l
Sector | oetwe
(b) | en two radii and an a
Segment | rc is c
(c) | alled:
Chord | (d) | Tangent | | 15. | How m
(a) | nany common ta
1 | ngent
(b) | s can be drawn for tw
2 | o toud
(c) | ching circles?
3 | (d) | 4 |