Version No.				ROLL NUMBER										
0	0	0	0		0	0	0	0	0	0	0			
1	1	1	1		1	1	1	1	1	1	1			
2	2	2	2		2	2	2	2	2	2	2			
3	3	3	3		3)	3	3	3	3	3	3	Ansv	ver Sheet No	\longrightarrow
4	4	4	4	(A	4	4	4	4	4	4	4			
(5)	(5)	(5)	(5)		5	5	(5)	(5)	(5)	(5)	(5)	Sign.	of Candidate _	
6	6	6	6		6	6	6	6	6	6	6	3	_	
7	7	7	7		7)	7	7	7	7	7	7			
8	8	8	8		8	8	8	8	8	8	8	Sign.	of Invigilator_	
9	9	9	9		9	9	9	9	9	9	9			·
							N // T /) T 7 (T (and C	4)	
					CI						–I (. arks	2 nd S€ 12)	et)	
						7	Гimе	allo	wed	: 20 I	Minu	ites		
			_	•		-							wered on this p wed. Do not us	age and handed
								_						se ieuu penen.
Q.1								_			J		es one mark.	500 11 4
	(1)		press			_		-			_	s increased to 1	520 mmHg then
			A.	1dm	3					(\mathcal{C}	B.	$2dm^3$	\bigcirc
			C.	3dm							\mathcal{I}	D.	4dm ³	\circ
	(2	2)		-						-	-		-	comes equal to water on the top
				ount E	-			Carre	u oo	iiiig	pom	t. The	bonnig point of	water on the top
			A.	70°C			7			(\geq	В.	100°C	\bigcirc
	(0		C.	130°		.1	C 11			,	<u>)</u>	D.	150°C	
	(3)		ounds								nich o	one is polar a	nd can dissolve
			A.	benz	zene	_	•	Ü		(\subseteq	B.	ether	\bigcirc
			C.	wate						(\mathcal{I}	D.	petrol	\circ
	(4	.)		rity of e pres								v many	numbers of mo	oles of NaOH
			A.	0.25		111 2.	J () (1)	1 01	uns	()	B.	0.5	\bigcirc
			C.	0.75						(C	D.	1.0	\circ
	(5	()		zing a	_							1 .		
						duces itself and oxidizes other substance duces itself and also reduces other substance							0 0 0	
			C.		Oxidizes itself and reduces other substance							Ŏ		
			D.	Oxio	dize	s its	elf a	nd al	so oz	kidize	es oth	er subs	stance	\bigcirc
	(6	5)			e fil	lled	in fo	ur sł	nells,	K, L	., M a		L shell has sub-	-shells
			A. C.	1s 3s, 3	3n 3	ßd				(\int	B. D.	2s, 2p 4s, 4p, 4d, 4f	\bigcirc
			٠.	20, 2	Γ, -	-				1 0	_		,,,	

Page 1 of 2

(7)	radioisotope is used for the diagnosis of tumor in the body?												
	A.	Cobalt-60	\bigcirc	В.	Iodine-131	\bigcirc							
	C.	Strontium-90	Ŏ	D.	Phosphorus-30	Ŏ							
(8)	Coval	ent bonds are formed by ound:	sharing	of	electron. Identify th	e covalent							
	A.	CS_2	\bigcirc	B.	Na_2S								
	C.	CaCl ₂	\bigcirc	D.	LiBr	0							
(9)	Predic	ct the group and period that sl	hows elec	etric	configuration of X is 3	$3s^2, 3p^4.$							
	A.	IIIA, 6 th	\bigcirc	B.		Ó							
	C.	VA, 4 th	\bigcirc	D.	VIA, 3 rd	\bigcirc							
(10)	Atoms react with each other. The following statements are correct EXCEPT :												
	A. They want to complete valance shell												
	B. They are short of electrons												
	C.	,											
	D.	They want to disperse			Ö								
(11)	Non-metals do not lose electrons easily. Predict which statement is correct about non-metals?												
	A.	They are malleable.			\bigcirc								
	В.	They are good conductor of heat.											
	C.	They are poor conductor of electricity.											
	D.	They are ductile.			\circ								
(11)	A chemist performed an experiment to check the percent purity of a glucose $C_6H_{12}O_6$ sample. Identify the branch of chemistry:												
	A.	Biochemistry	\bigcirc	B.	Analytical chemist	try 🔘							
	C.	Industrial chemistry	\bigcirc	D.	Organic chemistry								

Federal Board SSC-I Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.40 hours Total Marks: 53

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

Q.2 Attempt any ELEVEN parts from the following. All parts carry equal marks.

 $(11 \times 3 = 33)$

- i. Calculate the number of H atoms in 20g of glucose ($C_6H_{12}O_6$).
- ii. Describe relative atomic mass? Give an example.
- iii. Rutherford's atomic theory explains the atomic structure. What are the limitations of Rutherford's atomic theory?
- iv. An element has atomic number 17. Predict the position of it in Periodic Table.
- v. Define shielding effect. Among (Li, Na) and (N, P) pairs which one has higher shielding effect?
- vi. Noble metals show very low reactivity. Enlist three properties of their inertness.
- vii. Atoms are joined together by ionic or covalent bonds. Differentiate between ionic bond and covalent bond.
- viii. Differentiate between shell and subshell with an example.
- ix. The forces that bind the atoms together in a molecule are called chemical bonds. Show covalent bonding with the help of dot and cross structure of HCN and CO₂.
- x. Differentiate between amorphous solids and crystalline solids.
- xi. Define allotropy and give two examples.
- xii. Electroplating is the process in which one metal is coated on another by electrolytic process. Briefly explain electroplating of chromium with reactions.
- xiii. Define sublimation. Briefly explain with the help of example.
- xiv. Differentiate between electron affinity and electronegativity.
- xv. Identify oxidizing and reducing agents from the following equations.

 $2NH_3+3CuO \rightarrow 3Cu+N_2+3H_2O$ $WO_3+3H_2 \rightarrow W+3H_2O$

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 10 = 20)$

Q.3 a. What is vapour pressure of liquid? How does vapour pressure vary with temperature at constant pressure? Show by graph. (3+2)

SECTION – C (Marks 20)

b. Systematic arrangement of elements in a table is called periodic table. Describe its important features. (5)

- Q.4 a. Properties of compounds depend upon the nature of bond present in it. Illustrate the formation of ions in ${}_{12}\text{Mg}^{24}$ and ${}_{17}\text{Cl}^{35}$ by complete shell diagram. (6)
 - b. Differentiate between compound and mixture and give one example of each.

(4)

Q.5 a. A student obtained following data in an experiment at 20°C.

Prove Boyle's law by using given data:

P (atm)	V (cm ³)	P (atm)	V (cm ³)
0.350	0.707	0.951	0.261
0.551	0.450	1.210	0.205
0.762	0.320	1.521	0.163

b. Differentiate between solutions, suspensions and colloids.

(6)

* * * * *

CHEMISTRY SSC-I (2nd Set) Student Learning Outcomes Alignment Chart

SECTION A

Q.1

- 1. Account for pressure-volume changes in a gas using Boyle's Law.
- 2. Explain the effect of temperature and external pressure on vapor pressure and boiling point.
- 3. Use the rule that "like dissolves like" to predict the solubility of one substance in another.
- 4. Solve problems involving the Molarity of a solution.
- 5. Define oxidizing and reducing agents in a redox reaction.
- 6. Describe the presence of sub shells in a shell.
- 7. State the importance and uses of isotopes in various fields of life.
- 8. Recognize a compound as having ionic or covalent bonds.
- 9. Identify the relationship between electron configuration and the position of an element on the periodic table.
- 10. Explain how elements attain stability.
- 11. Show how cations and anions are related to the term's metals and non-metals.
- 12. Identify and provide examples of different branches of chemistry.

SECTION-B

Q.2

- i. Calculate the number of representative particles in a given number of moles of any substance.
- ii. Define relative atomic mass based on C-12 scale
- iii. Describe the contributions that Rutherford made to the development of the atomic theory.
- iv. Write the electronic configurations of the first 18 elements in the Periodic Table.
- v. Explain how shielding effect influences periodic trends.
- vi. Describe the importance of noble gas electronic configurations.
- vii. Describe the characteristics of an ionic/covalent bond.
- viii. Distinguish between shells and sub shells.
- ix. Describe with examples single, double, and triple covalent bonds
- x. Differentiate between amorphous and crystalline solids.
- xi. Explain the allotropic forms of solids.

- xii. Explain electroplating of metals on steel (using examples of zinc, Tin and chromium plating).
- xiii. Account for pressure-volume changes in a gas using Boyle's Law. Account for temperature-volume changes in a gas using Charles's Law. Summarize the properties of liquids like evaporation, vapor pressure, boiling point
- xiv. Explain how shielding effect influences periodic trends.
- xv. Define oxidizing and reducing agents in a redox reaction.

SECTION-C

- **Q.3** a. Explain the effect of temperature and external pressure on vapor pressure and boiling point.
 - b. Determine the demarcation of the periodic table into an s block and p block.
- **Q.4** a. Describe the formation of cations from an atom of a metallic element. Describe the formation of anions from an atom of a non-metallic element.
 - b. Differentiate among elements, compounds, and mixtures.
- **Q.5** a. Account for pressure-volume changes in a gas using Boyle's Law.
 - b. Differentiate between solutions, suspension, and colloids

CHEMISTRY SSC-I (2nd Set)

TABLE OF SPECIFICATION

Topics/Subtopics	Fundamentals of chemistry 1	Structure of atoms 2	Periodic table 3	Structure of Molecules 4	Physical states of matter 5	Solutions 6	Electrochemistry 7	Chemical Reactivity 8	Total marks for each Assessment	%age of cognitive level
(Knowledge based)	1xii(01) 2ii(03)	1vii(01) 2iii(03)	2xiv(03) 3b(05)	1x(01)	1ii(01) 2xi(03) 2xiii(03)		1v(01)		25	28.7%
(Understanding based)	4b(04)	1vi(01) 2viii(03)	1ix(01) 2iv(03) 2v(03)	1iii(01) 1viii(01) 2vii(03) 2ix(03)	2x(03)	3a(03) 5b(06)	2xii(03) 2xv(03)	1xi(01) 2vi(03)	45	51.7%
(Application based)	2i(03)			4a(06)	1i(01) 5a(04)	1iv(01) 3a(02)			17	19.5%
Total marks for each Topic/Subtopic	11	8	15	15	15	12	7	4	87	100%

KEY:

1(1)1

Question No (Part No.) Allocated Marks

Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:

- a) 30% knowledge based.
- b) 50% understanding based.
- c) 20% application based.
- (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
- (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult