Version No.			
0	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	(5)	5	(5)
6	6	6	6
$\overline{7}$	$\overline{7}$	$\overline{)}$	$\overline{7}$
8	8	8	8
9	9	9	9

PHYSICS SSC–II (2nd Set) SECTION – A (Marks 12) Time allowed: 15 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. All parts carry one mark.

1.	A plastic rod is rubbed with a dry cloth. The rod becomes positively charged because it has:									
	A.	gained electrons	0	B.	gained neutrons	\bigcirc				
	C.	lost electrons	Õ	D.	lost neutrons	Õ				
2.	The p	art of oscilloscope whi	ch cont	rols the	number of electrons is:					
	A.	Electron gun	\bigcirc	B.	Grid	\bigcirc				
	C.	Deflecting plates	\bigcirc	D.	Fluorescent screen	\bigcirc				
(3)	The ir	nstrument which stores	charge	s is:						
	A.	Electroscope	\bigcirc	B.	Capacitor	\bigcirc				
	C.	Resistor	\bigcirc	D.	Inductor	\bigcirc				
(4)	The count rate falls to a very low reading by placing a paper between radioactive source and detector. Which type of radiation is emitted by the source?									
	A.	α- Ray	\bigcirc	B.	β-Ray	\bigcirc				
	C.	Υ-Ray	\bigcirc	D.	X-rays	\bigcirc				
(5)	If a radioactive element has half life of 1 day. What fraction of the substance will be left at the end of 2^{nd} day?									
	A.	1/2	\bigcirc	B.	1/4	\bigcirc				
	C.	1/6	Ō	D.	1/8	Ō				
(6)	If an object is placed between 'F' and '2F' in front of convex lens then image formed is:									
	A.	real, inverted and dir	ninishe	d	\bigcirc					
	B.	virtual, inverted and diminished								
	C.	virtual, inverted and magnified								
	D	real, inverted and magnified								

Page 1 of 2

(7)	Veloc	vity of sound waves in	vacuur	n ie.						
()	v eioc		vacuui	II 15.	-1	\bigcirc				
	А.	332 ms^{-1}	Õ	В.	228 ms ⁻¹	Q				
	C.	140 ms ⁻¹	\bigcirc	D.	Zero ms ⁻¹	\bigcirc				
(8)	The f	requency of microway	ves used	l in mici	rowave oven is 240	00 MHz. The wave				
(-)	length	n of these waves will h	ne:							
	۸ nengu	0.125 m	\bigcirc	B	8 0 m					
	A.	0.125 III 105	\bigcirc	D. D	0.0 III 7200	0				
	C.	125 m	\bigcirc	D.	7200 m	0				
(9)	The p	art of the DC motor w	which re	verses t	he direction of cur	rent through coil after				
	every	half cycle:								
	Α.	Armature	\bigcirc	B.	Commutator	\bigcirc				
	C	Carbon brushes	$\widetilde{\bigcirc}$	D	Slin rings	$\tilde{\mathbf{O}}$				
	C.	Carbon brushes	\bigcirc	D.	Suprings	U				
(10)	A 1 1	1 1 1 1 0	. • •	• • • •	.1 . [1]	1				
(10)	A bal	A ball is dropped from a certain height onto the floor, and keeps bouncing. Its								
	motio	on will be:								
	A.	Rectilinear	\bigcirc	В.	Random	\bigcirc				
	C.	Simple harmonic	\bigcirc	D.	Rotatory	\bigcirc				
		1	\bigcirc		-	Ċ				
(11)	20a	nd 3 O are connected	in naral	llel its e	auivalent resistance	e will be				
(11)	Δ 32 α.		\square para	D		\sim				
	A.	4 52	Q	D. D	1.2.52	Ŭ				
	C.	2.5 Ω	\bigcirc	D.	5Ω	\bigcirc				
(12)	Electr	ric Generator works or	n the pr	inciple of	of:					
	A.	Ohm's law	\bigcirc	B.	Lenz's law	\bigcirc				
	C.	Coulomb's law	$\hat{\mathbf{O}}$	D.	Faraday's law	Ō				
			\bigcirc			\bigcirc				
		_			-					

Time allowed: 2.45 hours

Total Marks: 53

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

- Q.2 Attempt any ELEVEN parts from the following. All parts carry equal marks. (11×3=33)
 - i. Figure shows water waves approaching barrier of ripple tank. Draw reflected water waves. If wave has wavelength of 36 cm and speed of 1.2 ms⁻¹, calculate the frequency of waves.

- ii. Differentiate between transverse and longitudinal waves. (Any two)
- iii. β -particles ionize the air they pass through less strongly than the same number of α -particles. Suggest why this is so. Why ionization power of β -particles is less than α -particles?
- iv. Sound produced on sun is not heard on earth, why?
- v. An electric kettle is rated as 2.5 kW, 230 V. Determine a suitable current rating of the fuse to put in the three-pin plug. Choose from 1A, 5 A, 13 A, 30 A and briefly explain.
- vi. If pitch of sound is decreased in air. What is the effect on wavelength and wave velocity?
- vii. Differentiate between 'AND' gate and 'OR' gate. (Any three)
- viii. An object of size 3 cm is placed at a distance of 15 cm from a convex lens. Focal length of lens is 10 cm. Find the position, nature and size of image.
- ix. What spectacles will be used by a person suffering from far sightedness? Draw diagram to show correction of this problem.
- x. How fine electron beam will be obtained by electron gun?
- xi. Which one is more reliable to store data: floppy disc or hard disc? Briefly explain.
- xii. Describe one situation from everyday life in which static electricity is dangerous and precautions taken to ensure that charges are discharged safely.
- xiii. State Joule's Law. Write its formula.
- xiv. Sketch V-I characteristics graphs for
 - a. A metallic conductor
 - b. A filament lamp
 - c. A thermistor

xv. Why force is experienced by a current carrying conductor placed in a magnetic field?

SECTION – C (Marks 20)

Note:	Attempt any TWO questions. All questions carry equal marks. (2×1)									
Q.3	 a. Explain nuclear fission reaction in detail. (6) b. The force of repulsion between two identical positive charges is 80 N, when 									
		charges are 0.5 m apart. Find the value of each charge.	(4)							
Q.4	a.	Define intensity of sound waves. Derive formula to find intensity level unknown sound.	of (1+5)							
	b.	Find the length of second's pendulum and its frequency.								
Q.5	Q.5 a. What is total internal reflection? Describe the use of this phenomenon in optic fibers and endoscopy									
	b. A transformer is used to produce an output of 6V from 220V main supply. Primary coil of the transformer has 2000 turns. Calculate the number of turns in									
	the secondary coil.									
	* * * *									

PHYSICS SSC-II (2nd Set) Student Learning Outcomes Alignment Chart (Curriculum 2006)

SECTION – A

Q.1

- 1. Describe simple experiments to show the production and detection of electric charge.
- 2. Describe the basic principle of CRO and make a list of its uses.
- 3. Describe the construction and working principle of electroscope
- 4. State, for radioactive emissions: their relative penetrating abilities
- 5. Explain the meaning of half-life of a radioactive material.
- 6. Describe the use of a single lens as a magnifying glass and in a camera,
- 7. Sound waves require a material medium for their propagation.
- 8. Solve problems by applying the relation $v = f\lambda$.
- 9. Relate the turning effect on a coil to the action of a D.C. motor.
- 10. State the conditions necessary for an object to oscillate with SHM.
- 11. Calculate the equivalent resistance of a number of resistances connected in series and also in parallel.
- 12. Describe a simple form of A.C. generator.

SECTION-B

Q.2

- i. Describe properties of waves such as reflection, refraction and diffraction with the help of ripple tank.
- ii. Identify transverse and longitudinal waves in mechanical media.
- iii. State, for radioactive emissions: their nature, their relative ionizing effects
- iv. Sound waves require a material medium for their propagation.
- v. Explain the use of safety measures in household electricity, (fuse, circuit breaker)
- vi. Describe the effect of change in amplitude on loudness and the effect of change in frequency on pitch of sound.
- vii. State the action of the logic gates in truth table form.
- viii. Solve problems of image location by lenses using lens formula.
- ix. Describe the correction of short-sight and long-sight.
- x. Describe the simple construction and use of electron gun as a source of electron beam.
- xi. Describe the use of information storage devices such as hard discs, floppy, compact discs and flash drive.
- xii. Describe one situation in which static electricity is dangerous and the precautions taken to ensure that static electricity is discharged safely.
- xiii. Describe how energy is dissipated in a resistance and explain Joule's law.
- xiv. Sketch and interpret the *V-I* characteristics graph for a metallic conductor, a filament lamp and a thermistor.
- xv. Describe that a force acts on a current carrying conductor placed in a magnetic field as long as the conductor is not parallel to the magnetic field.

SECTION-C

- **Q.3** a. Describe briefly the processes of fission.
 - b. Solve problems on electrostatic charges by using Coulomb's law.
- **Q.4** a. Describe what is meant by intensity level and give its unit.
 - b. Solve problems by using the formula $T = 2\pi \sqrt{l/g}$.
- **Q.5** a. Describe how total internal reflection is used in light propagation through optical fibres.
 - b. List the use of transformer (step-up and step-down) for various purposes in your home.

PHYSICS SSC-II (2nd Set) TABLE OF SPECIFICATION

Assessment	Unit 10:	Unit 11:	Unit 12:	Unit 13:	Unit 14:	Unit 15:	Unit 16:	Unit 17:	Unit 18:	Total	Percentage
Objectives										marks	
Knowledge	2-ii(3)	4-a(6)	2-ix(3)	1-3(1)	2-xiii(3)		1-2(1)		3-a(3)	25	28.7%
based			5-a(2)				2-vii(3)	v			
Understanding	1-10(1)	1-7(1)	1-6(1)	1-1(1)	2-v(3)	1-9(1)	2-x(3)	2-xi(3)	1-4(1)	45	51.7%
based	2-i(3)	2-iv(3)	2-viii(3)		2-xiv(3)	2-xv(3)			1-5(1)		
		2-vi(3)	5-a(5)						2-iii(3)		
									3-a(3)		
Application	1-8(1)			2-xii(3)	1-11(1)	1-12(1)				17	19.5%
based	4-b(4)			3-b(4)		5-b(3)					
Total marks	12	13	14	9	10	8	7	3	11	87	100%

KEY:

2-ii(3) Question No-Part No. (Allocated Marks)

- Note: (i) The policy of FBISE for knowledge based questions, understanding based questions and application based questions is approximately as follows:
 - a) 30% knowledge based.
 - b) 50% understanding based.
 - c) 20% application based.
 - (ii) The total marks specified for each unit/content in the table of specification is only related to this model question paper.
 - (iii) The level of difficulty of the paper is approximately as follows:
 - a) 40% easy
 - b) 40% moderate
 - c) 20% difficult