Version No.	ROLL NUMBER	
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4	0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 Answer Sheet No	
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9	,

MATHEMATICS SSC-II

(Science Group) (Curriculum 2006) SECTION – A (Marks 15) Time allowed: 20 Minutes

Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. **Do not use lead pencil.**

Q.1 Fill the relevant bubble for each part. All parts carry one mark.

(1) Which one of the following types represents
$$(x - 3)(x + 3) = 0$$
?
A. Quadratic equation \bigcirc B. Linear equation \bigcirc
C. Cubic equation \bigcirc D. Pure quadratic equation \bigcirc
(2) If $b^2 - 4ac$ of an equation is the discriminant than the equation would be of the form:
A. $ax^2 - bx + c = 0$ \bigcirc B. $ax^2 + bx + c = 0$ \bigcirc
C. $ax^2 + bx + c = 0$ \bigcirc D. $ax^2 - bx - c = 0$ \bigcirc
(3) Which one of the following cannot be factorized without using synthetic division method?
A. $3x^2 + 5x + 2$ \bigcirc B. $5x + 10$ \bigcirc
(4) If a,β are the roots of $2x^2 - 6x - 4 = 0$, then what is value of $a^2\beta^3 + a^3\beta^2$?
A. -12 \bigcirc B. 12 \bigcirc
C. 6 \bigcirc D. -6 \bigcirc
(5) Which one of the following are the partial fractions of $\frac{x^3}{x^3+1}$?
A. $\frac{Ax^3}{x+1} + \frac{Bx+C}{x^2-x+1}$ \bigcirc B. $1 + \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$ \bigcirc
(6) Which one of the following expressions shows the shaded region?
A. $A \cap B'$ \bigcirc
B. $A' \cap B$ \bigcirc $A' \cup B$ \bigcirc $A' \cup B$ \bigcirc $A' \cup B'$ \bigcirc $A' \bigcirc$ $A' \cup B'$ \bigcirc $A' \bigcirc$ $A' \bigcirc$

U

Federal Board SSC-II Examination Mathematics Model Question Paper (Science Group) (Curriculum 2006)

					<u>SECTION</u>	<u>-A</u>			
Q No :	1:								
(1) D)	(2)	В	(3) C	(4) B	(5) D	(6) C	(7) A	
(8) (C	(9)	A	(10) B	(11) C	(12 A	(13) ±8	(14) B	
(15)	В								
					SECTION	<u>-B</u>			
SOLUT	TIONS:							MAR	KS
Q-no 2	2 (i):								04
	3x ² +4x	x-5 = !	5x ² + 2x +	1					
\Rightarrow	x ² - x +	3 = 0							(1)
\Rightarrow	Here, a	a = 1,	b = -1, c =	= 3,	4				(1)
\Rightarrow	We ha	ve x	$=\frac{-b\pm\sqrt{b}}{2}$	$\frac{2}{2} - 4ac$					(1)
	$x = \frac{1 \pm \sqrt{2}}{2}$			a				(0.5)	
		-						(0.5)	
\Rightarrow	$x = \frac{1\pm x}{2}$	$\frac{\sqrt{-12}}{2}$						(0.5))
(ii):									
Giver	n that th	e sma	aller num	ber of two o	consecutive	number is x,			
		-	umber = :						(1)
(b)			he produ $= 132$	ct of these tv	wo number is	s 132,			
				= 0	_1			(1)	
(c)	By usir	ng fac	torization	n method,					
	$I \Rightarrow x^2$	+12	x – 11x –	132 = 0				(0.5)	
	\Rightarrow (x	+12)(x-11) =	=0				(0.5)	
	⇒ Eit	her x	x = -120	r x = 11,					
	Hence	e the 1	numbers	are, Either	{ -12, -11}	Or { 11, 12}		(1)	
(iii):									
Civon	that or	0							

Given that $\propto~Q$,

(a) P = K Q_____I

(1)

(b) Given that $P = 12$ and $Q=4$	
$\Longrightarrow \mathbf{K} = \frac{P}{Q} = \frac{12}{3} = 4,$	(1)
Now for the value Q=8,	
$I \Longrightarrow P = 3(8) = 24$	(1)
(c) For $P = 21$,	
$I \implies Q = \frac{P}{K} = \frac{21}{3} = 7.$	(1)
(iv):	
$4x^2 + 3y^2 = 37$ I	
$3x^2 - y^2 = 5$ II	
Multiplying equation II with 3, and adding in I,	
$\Rightarrow 13x^2 = 52 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2$	(2)
Putting the value of x ² in equation number I,	
$\Rightarrow 16 + 3y^2 = 37 \Rightarrow y^2 = 7 \Rightarrow y = \pm \sqrt{7}$	(2)
(v):	
$U = \{1, 2, 3, \dots, 10\}$	
$A = \{2, 4, 6\}$	
$B = \{1, 3, 5\}$	
(a) $A' = U - A = \{1, 3, 5, 7, 8, 9, 10\}$	(1)
(b) $B' = U - B = \{2, 4, 6, 7, 8, 9, 10\}$ (c) $(A \cap B)' = U - A \cap B = U - \{\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$	(1) (1)
(d) $A' \cup B' = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. Hence verified the requirement	(1)
(vi):	
$A = \{1, 2, 3\} \qquad B = \{2, 4, 6\}$	
(i) A x B = { (1, 2), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 2), (3, 4), (3, 6) } (ii) R = { (x,y) $y=2x$ } = { (1,2), (2, 4), (3, 6) }	(2)
(ii) $R = \{(x,y) \mid y = 2x\} = \{(1,2), (2,4), (3,0)\}$ (iii) Domain of $R = \{1, 2, 3\}$ and Range of $R = \{2, 4, 6\}$	(1) (1)
(vii):	
(a) Mean $=\frac{\sum X}{n} = \frac{19}{10} = 1.9$ (b) Median =?	(1)
Here $n=10 \Rightarrow \frac{n}{2} = 5$ and $\frac{n+2}{2} = 6$	
$Median = \frac{1}{2} = (5th term + 6th term)$	
Here 5^{th} term = 2 and 6^{th} term = 2	

So, Median =
$$\frac{2+2}{2}$$
 = 2 (2)
(c) Mode = 3 (1)
(rifi):
Given that $tan \theta = \frac{4}{3}$, and $Sin \theta < 0$, \Rightarrow Perpendicular = 4 and Base = 3,
(a) Let, Perpendicular = a, Base = b and Hypotenuse = c, using Pythagoras theorem, we
Hypotenuse.
 $c^2 = a^2 + b^2 \Rightarrow c = \sqrt{16 + 9}$, $\Rightarrow c = 5$
 $\Rightarrow \cos \theta = \frac{3}{5}$.
Since $Cos \theta = \frac{3}{5}$ and $Cosec \theta = \frac{5}{a} = \frac{5}{4}$ (1)
(c) $1 + Cot^2 \theta = Cosec^2 \theta$
 $1 + (\frac{3}{4})^2 = (\frac{5}{3})^2$
 $\Rightarrow 1 + \frac{9}{16} = \frac{25}{16} \Rightarrow \frac{25}{16} = \frac{25}{16}$ Hence proved (1)
(k):
LH.S = $\frac{\sin \theta}{1 + \cos \theta} + \frac{Cos \theta}{Sin \theta}$
 $= \frac{\sin 12\theta + \cos \theta}{(1 + \cos \theta)(1 + \cos \theta)}$ (1)
 $= \frac{\sin 12\theta + \cos \theta}{(1 + \cos \theta)(1 + \cos \theta)}$ (1)
 $= \frac{\sin 12\theta + \cos \theta}{(1 + \cos \theta)(1 + \cos \theta)}$ (1)
 $= \frac{\sin 12\theta + \cos \theta}{(1 + \cos \theta)(1 + \cos \theta)}$ (1)
(b) $Cos 45^\circ = \frac{75}{3\sqrt{2}} \Rightarrow \frac{1}{\sqrt{2}} = \frac{75}{3\sqrt{2}} \Rightarrow \overline{RS} = 2$ (1)
(c) $(\overline{PQ})^2 = (\overline{QR})^2 + (\overline{PR})^2 + 2.\overline{QR}, \overline{RS}$
 $= (6)^2 + (2\sqrt{2}) + 2x (6) x (2)$
 $= 36 + 8 + 24$
 $= 68$
 $\overline{PQ} = 2\sqrt{17}$ (2)
(x):
(i) From given figure, \overline{OC} bisects \overline{AB} at M
 $\Rightarrow \overline{AM} = 5 \, \overline{cm}$. (j)

(ii) From given figure in right angled triangle OPC, we have $\overline{OC} = \overline{OA} = 7 \ cm$ (Radius)

Č

$$\overline{PC} = 4 \text{ cm} \qquad (\text{as in (i)})$$
So, by Pythagoras theorem,

$$\overline{(OP)^2} = (\overline{OC})^2 - (\overline{PC})^2$$

$$= 49 - 16 = 33$$

$$\overline{OP} = \sqrt{33}$$
(iii) From given figure in right angled triangle OMA, by Pythagoras theorem,

$$\overline{OM^2} = \overline{OA^2} - \overline{AM^2}$$

= 49 - 25

$$\overline{OM} = 2\sqrt{6}$$

(xii):

Figure:

Given: A circle with center *O* and \overline{OC} is the radial segment. \overrightarrow{AB} is perpendicular to \overline{OC}

At its outer end *C*.

To prove: \overrightarrow{AB} is a tangent to the circle at *C*. (0.5)

Construction: Take a point *P* other than *C* on \overrightarrow{AB} . Join *O* with *P*. (0.5)

Proof:

Statement	Reason
In $\triangle OCP$, $m \angle OCP = 90^{\circ}$ and $m \angle OPC < 90^{\circ}$ $m \angle OP > m \angle OC$ <i>P</i> is a point outside the circle. Similarly, every point on \overrightarrow{AB} except <i>C</i> lies outside the circle. Hence \overrightarrow{AB} intersects the circle at one point <i>C</i> only. <i>i.e.</i> \overrightarrow{AB} is a tangent to the circle at one point only.	$\overrightarrow{AB} \perp \overrightarrow{OC}$ (given) Acute angle of right angled triangle. Greater angle has greater side opposite to it \overrightarrow{OC} is the radial segment.

(1.5)

(xiii):

From given figure, we have,

(a) PC bisects $\angle APB$, $\therefore \angle x = 30$.

(1)

(0.5)

(2)

(2)

(b)
$$\overline{OP} = \overline{OA} \text{ (Radius)}$$
 (1)
 $\therefore \angle y = 30^{\circ} \text{ (Opposite angles of equal sides of isosceles triangle)}$ (1)
(c) $\angle AOB = 2 \angle APB \implies \angle AOB = 2 \times 60 = 120$ (2)
(i) (2)

(xiv):

Figure:

$$\Rightarrow x^{2} + 48 - 14x = 0$$

$$\Rightarrow x^{2} - 6x - 8x + 48 = 0$$

$$\Rightarrow (x - 6) (x - 8) = 0$$

$$\Rightarrow \text{ Either } x = 6 \text{ Or } x = 8$$
 (3)
Putting the values in equation III,

$$\Rightarrow \text{ for } x = 6, y = 8 \text{ and for } x = 8, y = 6$$
 (0.5)

$$\Rightarrow \text{ Either width} = 6 \text{ cm } \text{ (0.5)}$$

Q- No 4:
Figure:

$$B$$

$$B$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 6 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 8 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 8 \text{ cm}$$

$$OR \text{ width} = 8 \text{ cm and length} = 8 \text{ cm}$$

$$OR \text{ cm and length} = 8 \text{ cm and len$$

So that $m \widehat{ADC} = m \widehat{A'D'C'}$.	(1))
--	-----	---

To prove: $m \overline{AC} = m \overline{A'C'}$ (1)

Construction: Join *O* with *A*, *O* with *C*, *O* with *A*' and *O* with *C*'

So that we can form Δs OAC and O'A'C'.

Proof:

Chatamant	Deesey
Statement	Reason
In two equal circles <i>ABCD</i> and <i>A'B'C'D'</i>	Given
With centers <i>O</i> and <i>O</i> ' respectively,	
$m \widehat{ADC} = m \widehat{A'D'C'}$	Given
$m \angle ADC = m \angle A'D'C$	Central angles subtended by
	equal arcs of the equal circle.
Now in $\triangle AOC \leftrightarrow \triangle A'O'C$	
$m \overline{OA} = m \overline{O'A'}$	
$m \angle ADC = m \angle A'D'C$	Radii of equal circles
$m \overline{OC} = m \overline{O'C'}$	Proved
$\Rightarrow \Delta AOC \cong \Delta A'O'C'$	Radii of equal circles
In particular	$S.A.S \cong S.A.S$
-	
$m \overline{AC} = m A'C'$	

(1)

Q-No 5:

Given that, $x = \frac{12ab}{a-b}$ or $x = \frac{(6a)(6b)}{a-b}$ or $\frac{x}{6a} = \frac{6b}{a-b}$ ------I

By Componendo and Dividendo theorem,

By Componendo and Dividendo theorem,

(1)

(2)

(1)

Adding equation II and III,

$$\Rightarrow \frac{x-6a}{x+6a} + \frac{x+6b}{x-6b} = \frac{5b+a}{7b-a} + \frac{5a+b}{7a-b}$$
$$= \frac{(5b+a) + (5a+b)}{(7b-a)(7a-b)} = \frac{26ab + 5b^2 + 5a^2}{48ab + 7b^2 - 7a^2}$$
(2)

Q-No 6:

$$\frac{x^2}{(1-x)(1+x^2)^2} = \frac{A}{1-x} + \frac{Bx+C}{1+x^2} + \frac{Dx+E}{(1+x^2)^2} - \mathbf{I}$$

$$\Rightarrow x^2 = A (1+x^2)^2 + (Bx+C) (1-x)(1+x^2) + (Dx+E)(1-x) - \mathbf{I}$$

$$\Rightarrow x^2 = A (1+2x^2+x^4) + (Bx+C) (1-x+x^2-x^3) + (Dx+E)(1-x) - \mathbf{I}$$

$$\text{Putting x} = 1 \text{ in equation number II,}$$

$$(1)$$

$$\Rightarrow 1 = 4A \Rightarrow A = \frac{1}{4} - \dots - IV$$
(1)

Comparing coefficient of x⁴,

$$\Rightarrow 0 = A - B - \dots V$$

Comparing the coefficient of x³,

$$0 = B - C - VI$$

Comparing the coefficient of x^2 ,

1=2A-B+C-D----VII

Comparing the coefficient of x,

0 = B - C + D - E-----VIII

Comparing the constant,

0 = A + C + E - IXFrom $V \Rightarrow A - B = 0 \Rightarrow B = A \Rightarrow B = \frac{1}{4}$ (1)
From $VI \Rightarrow B - C = 0 \Rightarrow C = \frac{1}{4}$ (1)
From $VI \Rightarrow 2A - B + C - D = 1 \Rightarrow \frac{1}{2} + \frac{1}{4} - \frac{1}{4} - 1 = D \Rightarrow D = -\frac{1}{2}$ (1)
From $IX \Rightarrow A + C + E = 0 \Rightarrow E = -\frac{1}{2}$ (1)
Putting all values in Equation I, $\Rightarrow \frac{x^2}{(1-x)(1+x^2)^2} = \frac{1}{4(1-x)} + \frac{\frac{1}{4}x + \frac{1}{4}}{1+x^2} + \frac{-\frac{1}{2}x - \frac{1}{2}}{(1+x^2)^2}$

Q-No 7:

 \Rightarrow

1245, 1255, 1654, 1547, 1245, 1255, 1547, 1737, 1989, 2011.

Let the data be represented by X. We make the following table

 $\frac{1}{4(1-x)} + \frac{x+1}{4(1+x^2)} - \frac{(x+1)}{2(1+x^2)^2}$

(3)

Х	X ²	
1245	1550025	
1245	1550025	
1255	1575025	
1255	1575025	
1547	2393209	
1547	2393209	
1654	2735716	
1737	3017169	
1989	3956121	
2011	4044121	
$\sum X =$	$\sum X^2 =$	
15485	24789645	
$P_{approp} = 2011 + 124E = 766$		

Range = 2011 - 1245 = 766

Variance (X) = S² = $\frac{\sum X^2}{n} - (\frac{\sum X}{n})^2$

$$= \frac{24789645}{10} - \left(\frac{15485}{10}\right)^2$$

= 81112.25 (3)

Standard deviation = $S = \sqrt{81112,25}$

= 284.80 (1)