Version No.			

ROLL NUMBER						

$\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ (2) & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 4 & 4 & 4 & 4 & 4 & 4 & 4 \\ 5 & 5 & 5 & 5 & 5 & 5 & 5 \\ (6) & 6 & 6 & 6 & 6 & 6 & 6 \\ 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$

Answer Sheet

No.

Sign. of Candidate

Sign. of Invigilator

MATHEMATICS SSC-II
 (Science Group) (Curriculum 2006)
 SECTION - A (Marks 15)
 Time allowed: 20 Minutes

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/overwriting is not allowed. Do not use lead pencil.

Q. 1 Fill the relevant bubble for each part. All parts carry one mark.

(1) Which one of the following types represents $(x-3)(x+3)=0$?
A. Quadratic equation
○
B. Linear equation
C. Cubic equation
D. Pure quadratic equation

(2) If $b^{2}-4 a c$ of an equation is the discriminant than the equation would be of the form:
A. $a x^{2}-b x+c=0$B. $a x^{2}+b x+c=0$
C. $\quad a x^{2}+b x+c=0$
\bigcirc
D. $a x^{2}-b x-c=0$
(3) Which one of the following cannot be factorized without using synthetic division method?
A. $3 x^{2}+5 x+2$
\bigcirc
B. $5 x+10$
C. $\quad 3 x^{4}+3 x^{3}-2 x+6$
D. $\quad x^{2}-\frac{1}{x^{2}}$
(4) If α, β are the roots of $2 x^{2}-6 x-4=0$, then what is value of $\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}$?
A. -12
\bigcirc
B. 12
C. 6
D. -6
(5) Which one of the following are the partial fractions of $\frac{x^{3}}{x^{3}+1}$?
A. $\frac{A x^{3}}{x+1}+\frac{B x+C}{x^{2}-x+1}$
B. $1+\frac{A}{x-1}+\frac{B x+C}{x^{2}+x+1}$
C. $\quad 1+\frac{A}{x+1}+\frac{B x+C}{x^{2}-x-1}$
\bigcirc
D. $1+\frac{A}{x+1}+\frac{B x+C}{x^{2}-x+1}$
(6) Which one of the following expressions shows the shaded region?

A.	$A \cap B^{\prime}$	\bigcirc
B.	$A^{\prime} \cap B$	\bigcirc
C.	$A \cup B^{\prime}$	\bigcirc
D.	$A^{\prime} \cup B$	\bigcirc

(7) If $\overline{\boldsymbol{x}}=7, \sum f=30$ and $\sum f x=120+3 k$ then value of k is
A. $\quad 30$
\bigcirc
B. -30
C. -11
D. 11
(8) Which one of the following is NOT equal to $\tan \theta$ for a unit circle?
A. $\frac{\cos \theta}{\sin \theta}$
C. $\quad \frac{\sec \theta}{\operatorname{ses} \theta}$
\bigcirc
B. $\frac{1}{\cot \theta}$
$\cos \theta$
\bigcirc
D. $\frac{\sin \theta}{\cos \theta}$
(9) Which one of following is the radius of a circle, if an arc of 10 cm subtends an angle of 60° ?
$\begin{array}{ll}\text { A. } & \frac{30}{\pi} \mathrm{~cm} \\ \text { C. } \quad \frac{10800}{\pi} \mathrm{~cm}\end{array}$
\bigcirc
B. $\quad \frac{\pi}{30} \mathrm{~cm}$
D.
D. $\quad \frac{1}{6} \mathrm{~cm}$
(10) What is the value of $m \angle A O B$ in the adjoining figure of a hexagon?
A. $\quad 360^{\circ} \div 45^{\circ}$
B. $360^{\circ} \div 60^{\circ}$
C. $\quad 360^{\circ} \div 30^{\circ}$
D. $360^{\circ} \div 120^{\circ}$

(11) What is the elevation of Sun if a pole of 6 m high casts a shadow of $2 \sqrt{3} m$?
A. 30°
\bigcirc
B. 45°
C. $\quad 60^{\circ}$
D. 90°
(12) If $\overline{A B}=6 \mathrm{~cm}$ is a chord of a circle with centre O and $\overline{O C} \perp \overline{A B}$, then length of $\overline{\mathrm{AC}}$ will be:

A.	3
B.	2
C.	12
D.	14

(13) What is the value of x if $64, x$ and 1 are in continued proportion?
A. 3
B. $\pm \sqrt{3}$
C. $\sqrt{3}$
D. ± 8
(14) In the drawn figure, what is the value of $m \angle B C D$?
A. 165°
B. 155°
C. 80°

D. 130°

(15) If $f: B \rightarrow A$, then which one of the following represents a / an ?

A. Onto function
B. Bijective function
C. Injective function
D. Into function

Federal Board SSC-II Examination
 Mathematics Model Question Paper

(Science Group) (Curriculum 2006)

SECTION -A

Q No 1:

(1) D
(2) B
(3) C
(4) B
(5) D
(6) C
(7) A
(8) C
(9) A
(10) B
(11) C
(12 A
(13) ± 8
(14) B
(15) B

SECTION -B

SOLUTIONS:

Q-no 2 (i):

$$
\begin{align*}
& 3 x^{2}+4 x-5=5 x^{2}+2 x+1 \\
\Rightarrow \quad & x^{2}-x+3=0 \tag{1}\\
\Rightarrow \quad & \text { Here, } a=1, b=-1, c=3 \tag{1}
\end{align*}
$$

\Rightarrow We have $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\Rightarrow \quad \mathrm{x}=\frac{1 \pm \sqrt{1-12}}{2}$
$\Rightarrow \quad x=\frac{1 \pm \sqrt{-1 \overline{2}}}{2}$
(ii):

Given that the smaller number of two consecutive number is x ,
(a) The larger number $=x+1$
(b) Given that the product of these two number is 132 ,
$\Rightarrow x(x+1)=132$
$\Rightarrow x^{2}+x-132=0$ \qquad I
(c) By using factorization method,

$$
\begin{align*}
I & \Rightarrow x^{2}+12 x-11 x-132=0 \tag{0.5}\\
& \Rightarrow(x+12)(x-11)=0 \tag{0.5}
\end{align*}
$$

\Rightarrow Either $\mathrm{x}=-12$ Or $\mathrm{x}=11$,
Hence the numbers are, Either $\{-12,-11\}$ Or $\{11,12\}$
(iii):

Given that $\propto Q$,
(a) $P=K Q$ \qquad I
(b) Given that $\mathrm{P}=12$ and $\mathrm{Q}=4$
$\Rightarrow \mathrm{K}=\frac{P}{Q}=\frac{12}{3}=4$,
Now for the value $\mathrm{Q}=8$,

$$
\begin{equation*}
I \Rightarrow P=3(8)=24 \tag{1}
\end{equation*}
$$

(c) For $\mathrm{P}=21$,

$$
\begin{equation*}
\mathrm{I} \Rightarrow \mathrm{Q}=\frac{P}{K}=\frac{21}{3}=7 \tag{1}
\end{equation*}
$$

(iv):
$4 x^{2}+3 y^{2}=37---------$ I
$3 x^{2}-y^{2}=5-----------$-II
Multiplying equation II with 3 , and adding in I,
$\Rightarrow 13 x^{2}=52 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2$
Putting the value of x^{2} in equation number I,
$\Rightarrow 16+3 y^{2}=37 \quad \Rightarrow y^{2}=7 \quad \Rightarrow y= \pm \sqrt{7}$
(v):
$\mathrm{U}=\{1,2,3, \ldots \ldots10\}$
$A=\{2,4,6\}$
$\mathrm{B}=\{1,3,5\}$
(a) $A^{\prime}=\mathrm{U}-\mathrm{A}=\{1,3,5,7,8,9,10\}$
(b) $B^{\prime}=\mathrm{U}-\mathrm{B}=\{2,4,6,7,8,9,10\}$
(c) $(A \cap B)^{\prime}=\mathrm{U}-A \cap B=\mathrm{U}-\{ \}=\{1,2,3,4,5,6,7,8,9,10\}$
(d) $A^{\prime} \cup B^{\prime}=\{1,2,3,4,5,6,7,8,9,10\}$. Hence verified the requirement
(vi):
$\mathrm{A}=\{1,2,3\} \quad \mathrm{B}=\{2,4,6\}$
(i) $\mathrm{A} x \mathrm{~B}=\{(1,2),(1,4),(1,6),(2,2),(2,4),(2,6),(3,2),(3,4),(3,6)\}$
(ii) $\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \backslash \mathrm{y}=2 \mathrm{x}\}=\{(1,2),(2,4),(3,6)\}$
(iii) Domain of $R=\{1,2,3\}$ and Range of $R=\{2,4,6\}$
(vii):

4	1	2	1	0	0	3	2	3	3

(a) Mean $=\frac{\sum X}{n}=\frac{19}{10}=1.9$
(b) Median $=$?

0	0	1	1	2	2	3	3	3	4

Here $\mathrm{n}=10 \Rightarrow \frac{n}{2}=5$ and $\frac{n+2}{2}=6$

Median $=\frac{1}{2}=(5$ th term +6 th term $)$
Here $5^{\text {th }}$ term $=2$ and $6^{\text {th }}$ term $=2$

$$
\begin{equation*}
\text { So, Median }=\frac{2+2}{2}=2 \tag{2}
\end{equation*}
$$

(c) \quad Mode $=3$
(viii):

Given that $\tan \theta=\frac{4}{3}$, and $\operatorname{Sin} \theta<0, \Rightarrow$ Perpendicular $=4$ and Base $=3$,
(a) Let, Perpendicular $=\mathrm{a}$, Base $=\mathrm{b}$ and Hypotenuse $=\mathrm{c}$, using Pythagoras theorem, we Hypotenuse.

$$
c^{2}=a^{2}+b^{2} \Rightarrow c=\sqrt{16+9}, \Rightarrow c=5
$$

$\Rightarrow \operatorname{Cos} \theta=\frac{3}{5}$,
Since $\operatorname{Cos} \theta$ and $\tan \theta>0$ while $\operatorname{Sin} \theta<0$, So θ lies in IV- Quadrant.
(b) $\operatorname{Sec} \theta=\frac{c}{b}=\frac{5}{3} \quad$ and $\operatorname{Cosec} \theta=\frac{c}{a}=\frac{5}{4}$
(c) $1+\operatorname{Cot}^{2} \theta=\operatorname{Cosec}^{2} \theta$

$$
\begin{align*}
& 1+\left(\frac{3}{4}\right)^{2}=\left(\frac{5}{4}\right)^{2} \\
& \Rightarrow 1+\frac{9}{16}=\frac{25}{16} \quad \Rightarrow \quad \frac{25}{16}=\frac{25}{16} \text { Hence proved } \tag{1}
\end{align*}
$$

(ix):

$$
\begin{align*}
\text { L.H.S }= & \frac{\sin \theta}{1+\cos \theta}+\frac{\cos \theta}{\sin \theta} \\
& =\frac{\sin ^{2} \theta+\cos \theta(1+\cos \theta)}{(1+\cos \theta)(\sin \theta)} \tag{1}\\
& =\frac{\sin ^{2} \theta+\cos 2+\cos \theta}{(1+\cos \theta)(\sin \theta)} \tag{1}\\
& =\frac{1+\cos \theta}{(1+\cos \theta)(\sin \theta)} \tag{1}\\
& =\frac{1}{\sin \theta} \\
& =\operatorname{Cosec} \theta=\text { R.H.S }, \text { Hence proved } \tag{1}
\end{align*}
$$

(x):
(a)
(b) $\quad \operatorname{Cos} 45^{\circ}=\frac{\overline{R S}}{2 \sqrt{2}} \Rightarrow \frac{1}{\sqrt{2}}=\frac{\overline{R S}}{2 \sqrt{2}} \Rightarrow \overline{R S}=2$
(c) $\quad(\overline{P Q})^{2}=(\overline{Q R})^{2}+(\overline{P R})^{2}+2 \cdot \overline{Q R} \cdot \overline{R S}$

$$
\begin{aligned}
& =(6)^{2}+(2 \sqrt{2})+2 \times(6) \times(2) \\
& =36+8+24 \\
& =68
\end{aligned}
$$

$$
\begin{equation*}
\overline{P Q}=2 \sqrt{17} \tag{2}
\end{equation*}
$$

(xi):
(i) From given figure, $\overline{\mathrm{OC}}$ bisects $\overline{\mathrm{AB}}$ at M

$$
\begin{equation*}
\Rightarrow \quad \overline{A M}=5 \mathrm{~cm} . \tag{1}
\end{equation*}
$$

(ii) From given figure in right angled triangle OPC, we have

$$
\overline{O C}=\overline{O A}=7 \mathrm{~cm} \text { (Radius) }
$$

$$
\overline{\mathrm{PC}}=4 \mathrm{~cm} \quad \text { (as in (i)) }
$$

So, by Pythagoras theorem,

$$
\begin{align*}
\overline{(\mathrm{OP})^{2}} & =\left(\overline{\mathrm{OC})^{2}}-\left(\overline{\mathrm{PC})^{2}}\right.\right. \\
& =49-16=33 \\
\overline{\mathrm{OP}} & =\sqrt{33} \tag{2}
\end{align*}
$$

(iii) From given figure in right angled triangle OMA, by Pythagoras theorem, $\overline{\mathrm{OM}}^{2}={\overline{\mathrm{OA}^{2}}}^{2}-\overline{\mathrm{AM}}^{2}$

$$
=49-25
$$

$$
\begin{equation*}
\overline{\mathrm{OM}}=2 \sqrt{6} \tag{2}
\end{equation*}
$$

(xii):

Figure:

Given: A circle with center O and $\overline{O C}$ is the radial segment. $\overleftrightarrow{A B}$ is perpendicular to $\overline{O C}$
At its outer end C.
To prove: $\quad \overleftrightarrow{A B}$ is a tangent to the circle at C.
Construction: Take a point P other than C on $\overleftrightarrow{A B}$. Join O with P.
Proof:

Statement	Reason
$\begin{aligned} & \text { In } \triangle O C P, \\ & \mathrm{~m} \angle O C P=90^{\circ} \\ & \text { and } \quad \mathrm{m} \angle O P C<90^{\circ} \\ & \quad \mathrm{m} \angle O P>\mathrm{m} \angle O C \end{aligned}$ P is a point outside the circle. Similarly, every point on $\overleftrightarrow{A B}$ except C lies outside the circle. Hence $\overleftrightarrow{A B}$ intersects the circle at one point Conly. i.e. $\overleftrightarrow{A B}$ is a tangent to the circle at one point only.	$\overleftrightarrow{A B} \perp \overleftrightarrow{O C}$ (given) Acute angle of right angled triangle. Greater angle has greater side opposite to it $\overline{O C}$ is the radial segment.

(xiii):

From given figure, we have,
(a) $\quad \mathrm{PC}$ bisects $\angle A P B, \quad \therefore \angle x=30$.
(b) $\quad \overline{\mathrm{OP}}=\overline{\mathrm{OA}}$ (Radius)
$\therefore \angle y=30^{\circ}$ (Opposite angles of equal sides of isosceles triangle)
(c) $\angle A O B=2 \angle A P B \Rightarrow \angle A O B=2 x 60=120$
(xiv):

Figure:

(3)

$$
\begin{equation*}
\mathrm{m} \overline{A B}=6 \mathrm{~cm}, \quad \mathrm{~m} \overline{B C}=4 \mathrm{~cm} \quad \mathrm{~m} \overline{A C}=4 \mathrm{~cm} \tag{1}
\end{equation*}
$$

Here radius $=3 \mathrm{~cm}$. (Answer)

SECTION - C

Q-No-3:

Let the width of the rectangle $=\mathrm{xcm}$
And the length of the rectangle is $=y \mathrm{~cm}$
Area of original rectangle $=48 \mathrm{~cm}^{2} \quad$ (given)
Area $=$ length x width

$$
\begin{equation*}
48 \text { = xy-----------------। } \tag{1}
\end{equation*}
$$

By given condition after increase in length and width by 4 cm

$$
\text { Width }=x+4 \quad \text { and } \quad \text { length }=y+4
$$

The area of new rectangle is

$$
\begin{align*}
& (x+4)(y+4)=48+72 \quad \text { (given, area increased by } 72 \mathrm{~cm}) \\
\Rightarrow \quad & x y+4 x+4 y+16=48+72 \\
\Rightarrow \quad & 4(x+y)=56 \\
\Rightarrow \quad & x+y=14------------ \text {-II } \tag{2}
\end{align*}
$$

From equation I we have $\mathrm{y}=\frac{48}{x}$
Putting this value in equation II,

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{x}+\frac{48}{x}=14 \\
& \Rightarrow \quad \frac{x^{2}+48}{x}=14
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & x^{2}+48-14 x=0 \\
\Rightarrow & x^{2}-6 \mathrm{x}-8 \mathrm{x}+48 \quad=0 \\
\Rightarrow & (\mathrm{x}-6)(\mathrm{x}-8)=0 \\
& \Rightarrow \text { Either } \quad \mathrm{x}=6 \quad \text { or } \quad \mathrm{x}=8 \tag{3}
\end{array}
$$

Putting the values in equation III,

$$
\begin{gather*}
\Rightarrow \quad \text { for } x=6, y=8 \quad \text { and for } x=8, y=6 \tag{0.5}\\
\Rightarrow \quad \text { Either width }=6 \mathrm{~cm} \text { and length }=8 \mathrm{~cm} \\
\text { OR width }=8 \mathrm{~cm} \text { and length }=6 \mathrm{~cm} \tag{0.5}
\end{gather*}
$$

Q- No 4:

Figure:

D

D'

Given: $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are two congruent circles, with centers O and O^{\prime} respectively.

$$
\begin{equation*}
\text { So that } m \widehat{A D C}=m \widehat{A^{\prime} D^{\prime} C^{\prime}} \text {. } \tag{1}
\end{equation*}
$$

To prove: $m \overline{A C}=m \overline{A^{\prime} C^{\prime}}$
Construction: Join O with A, O with C, O with A^{\prime} and O with C^{\prime} So that we can form $\Delta s O A C$ and $O^{\prime} A^{\prime} C^{\prime}$.

Proof:

Statement	Reason
In two equal circles $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$	Given
With centers O and O^{\prime} respectively,	
$m \overline{A D C}=m \bar{A}^{\prime} D^{\prime} C^{\prime}$	Given
$\mathrm{m} \angle A D C=\mathrm{m} \angle A^{\prime} D^{\prime} C$	Central angles subtended by
Now in $\triangle A O C \leftrightarrow \Delta A^{\prime} O^{\prime} C$	equal arcs of the equal circle.
$\mathrm{m} \overline{O A}=m \overline{O^{\prime} A^{\prime}}$	
$\mathrm{m} \angle A D C=\mathrm{m} \angle A^{\prime} D^{\prime} C$	Radii of equal circles
$\mathrm{m} \overline{O C}=m \overline{O^{\prime} C^{\prime}}$	Proved
$\Rightarrow \Delta A O C \cong \Delta A^{\prime} O^{\prime} C^{\prime}$	Radii of equal circles
In particular	S.A.S S.A.S
$\mathrm{m} \overline{A C}=m \overline{A^{\prime} C^{\prime}}$	

Q-No 5:

Given that, $x=\frac{12 a b}{a-b}$ or $x=\frac{(6 a)(6 b)}{a-b} \quad$ or $\quad \frac{x}{6 a}=\frac{6 b}{a-b}-\cdots-\cdots----$ I
By Componendo and Dividendo theorem,

$$
\begin{align*}
& \frac{x-6 a}{x+6 a}=\frac{6 b+(a-b)}{6 b-(a-b)} \\
& =\frac{5 b+a}{7 b-a}-------------- \text { II } \tag{2}
\end{align*}
$$

Again consider equation $\mathrm{I}, \Rightarrow \frac{x}{6 b}=\frac{6 a}{a-b}$
By Componendo and Dividendo theorem,

$$
\begin{align*}
\frac{x+6 b}{x-6 b} & =\frac{6 a-(a-b)}{6 a+(a-b)} \\
& =\frac{5 a+b}{7 a-b}-\cdots------ \text { III } \tag{2}
\end{align*}
$$

Adding equation II and III,

$$
\begin{align*}
\Rightarrow \quad \frac{x-6 a}{x+6 a}+\frac{x+6 b}{x-6 b} & =\frac{5 b+a}{7 b-a}+\frac{5 a+b}{7 a-b} \\
& =\frac{(5 b+a)+(5 a+b)}{(7 b-a)(7 a-b)}=\frac{26 a b+5 b^{2}+5 a^{2}}{48 a b+7 b^{2}-7 a^{2}} \tag{2}
\end{align*}
$$

Q-No 6:

$\frac{x^{2}}{(1-x)\left(1+x^{2}\right)^{2}}=\frac{A}{1-x}+\frac{B x+C}{1+x^{2}}+\frac{D x+E}{\left(1+x^{2}\right)^{2}}$ \qquad
$\Rightarrow x^{2}=A\left(1+x^{2}\right)^{2}+(B x+C)(1-x)\left(1+x^{2}\right)+(D x+E)(1-x)-\cdots---------$ II
$\Rightarrow x^{2}=A\left(1+2 x^{2}+x^{4}\right)+(B x+C)\left(1-x+x^{2}-x^{3}\right)+(D x+E)(1-x)$
Putting $\mathrm{x}=1$ in equation number II,

$$
\begin{equation*}
\Rightarrow 1=4 A \Rightarrow A=\frac{1}{4}-----\mathrm{IV} \tag{1}
\end{equation*}
$$

Comparing coefficient of x^{4},
$\Rightarrow 0=\mathrm{A}-\mathrm{B}$ \qquad
Comparing the coefficient of x^{3},
$0=\mathrm{B}-\mathrm{C}$ VI

Comparing the coefficient of x^{2},
$1=2 \mathrm{~A}-\mathrm{B}+\mathrm{C}-\mathrm{D}$ - \qquad -VII

Comparing the coefficient of x ,
$0=B-C+D-E-$
Comparing the constant,
$0=A+C+E$
From $V \Rightarrow A-B=0 \Rightarrow B=A \Rightarrow B=\frac{1}{4}$
From $\mathrm{VI} \Rightarrow \mathrm{B}-\mathrm{C}=0 \Rightarrow \mathrm{C}=\frac{1}{4}$
From VII $\Rightarrow 2 \mathrm{~A}-\mathrm{B}+\mathrm{C}-\mathrm{D}=1 \quad \Rightarrow \frac{1}{2}+\frac{1}{4}-\frac{1}{4}-1=D \quad \Rightarrow \mathrm{D}=-\frac{1}{2}$,
From IX $\Rightarrow \mathrm{A}+\mathrm{C}+\mathrm{E}=0 \quad \Rightarrow \mathrm{E}=-\frac{1}{2}$,
Putting all values in Equation I,
$\Rightarrow \quad \frac{x^{2}}{(1-x)\left(1+x^{2}\right)^{2}}=\frac{1}{4(1-x)}+\frac{\frac{1}{4} x+\frac{1}{4}}{1+x^{2}}+\frac{-\frac{1}{2} x-\frac{1}{2}}{\left(1+x^{2}\right)^{2}}$
$\Rightarrow \quad \frac{1}{4(1-x)}+\frac{x+1}{4\left(1+x^{2}\right)}-\frac{(x+1}{2\left(1+x^{2}\right)^{2}}$

Q-No 7:

$1245,1255,1654,1547,1245,1255,1547,1737,1989,2011$.
Let the data be represented by X. We make the following table

X	X^{2}
1245	1550025
1245	1550025
1255	1575025
1255	1575025
1547	2393209
1547	2393209
1654	2735716
1737	3017169
1989	3956121
2011	4044121
$\sum X=$	$\sum^{2}=$
15485	24789645

Range $=2011-1245=766$
Variance (X) $=\mathrm{S}^{2}=\frac{\sum X^{2}}{n}-\left(\frac{\sum X}{n}\right)^{2}$

$$
\begin{align*}
& =\frac{24789645}{10}-\left(\frac{15485}{10}\right)^{2} \\
& =81112.25 \tag{3}
\end{align*}
$$

Standard deviation $=S=\sqrt{81112,25}$

$$
\begin{equation*}
=284.80 \tag{1}
\end{equation*}
$$

