7	/ersic	on N	0.		R	OLL	NU.	MBE	ER			
(0)	0	0	0	(0)	(0)	0	0	(0)	(0)	(0)		
(1)	(1)	1	(1)	(1)	(1)	1	1	1	(1)	(1)		
(2)	(3)	(2)(3)	(2)	(3)	(2)(3)	(2)(3)	(2)(3)	(2)(3)	(2)	(3)	Answer Sheet No.	
4	4	4	(4)	(4)	4	4	4	4	4	4		
(5)	(5)	(5)	(5)	(5)	5	(5)	(5)	5	5	5		
(6)	6	6	6	(6)	6	6	6	6	6	6	Sign. of Candidate	
(7)	(7)	(7)	(7)	(7)	7	7	(7)	(7)	(7)	(7)		
(8)	8	8	8	(8)	8	8	(8)	8	(8)	(8)	Sign. of Invigilator	
9	9	9	9	9	9	9	9	9	9	9		
											Cat Calutian)	
				CHEN		SEC'					Set Solution) 12)	
						Time	e allo	wed	: 20	Minu	ites	
			_	•	-						be answered on this page not allowed. Do not use le	
OVCI	io the	, CCI	iti e be	ирегипсис	iciit.	Dele	umg/ v	0 ()	V 11t11	15 15	not unowed. Do not use te	uu penen.
Q.1	Fil	l the	relev	ant bubb	le fo	r eac	ch pa	rt. E	ach	part	carries one mark.	
	(1)							ed for		_	uction of Na ₂ CO ₃ is:	
			A. C.	NH ₃ ,CC)2	0	B	$\overline{}$	Lime stone, NH ₃ , Brine NH ₃ , Brine, Ca(OH) ₂	
	(2)						d wi				electrolysis. Identify the hy	drogen-
	` '		oxyge	en ratio by								
			A. C.	1:1 2:1					B D		2:2 1:2	\bigcirc
	(3)	Ì	The c	olour of s	ilk cl	lothes	s fad	es aw			SO ₂ . Identify the source o	f SO ₂ from
	()		the fo	llowing:					,		- ,	_
			A. B.	Aerosol Industri			ossil	fuels	2			
			C.	Refrige	rants	,					\circ	
			D.	Decayir	ng of	dead	plar	ıt ma	teria	1	0	
	(4)			_	n is a	an inc	licato	or wh			d in titration. Predict the co	olor in base
			A. C.	Red Colorle:	SS			\bigcirc	B		Yellow Pink	
	(5)		DNA	is the nuc	eleic	acid 1	respo	onsib	le foi	r here	edity characters. The follow	ving
			comp	onents are	pre	sent i	n DN		XCI	EPT :	·	
			A. C.	Nitroge Ribose					B D		Phosphate unit Deoxy ribose sugar	\bigcirc
			.	Ribose	sugu	•			D	•	O	\circ
											11	
	(6)					com	poun	d to			$G_3 - CH_2 - C - CH_3$ belong	gs to:
			A. C.	Aldehyo Esters	ues			\bigcirc	B		Ethers Ketones	
							Þ	o age 1				_
	(7)		Identi	ify the pro	cess	that		_			om Alkene:	

	A.	hydration	\bigcirc	В.	dehy	dration	\bigcirc	
	C.	hydrogenation		D.	dehy	drogenation	\bigcirc	
(8)	Predi	ct the property that org	anic co	mpoun	ds have			
(-)	A.	Low melting and lov						
	В.	High melting and lo		~ .		Ō		
	C.	Low melting and hig		U 1	ts ()))		
	D.	High melting and lo			ts (C		
(9)	Propo	ose which one of the fo	llowing	g gives	addition			
	A.	Methane	Q		B.	Ethane	Q	
	C.	Propyne			D.	Propane	O	
(10)		ct the rate of forward r	eaction	in the b	_	_	le reaction	:
	A.	Moderate	\simeq		В.	Negligible	Q	
	C.	Slow	O		D.	Very fast		
(11)	Interr	oret which statement is	true ab	out eau	ilibriun	n state:		
()	A.	Forward reaction sto						
	B.	Reverse reaction sto	-			$\tilde{\bigcirc}$		
	C.	Both reactions stop	F ~			\tilde{O}		
	D.	Both reactions conti	nue sim	nultaneo	ously			
(12)	Ident	ify, which one of the fo	ollowin	g is use	d for the	e reduction of A	Alkyl Halic	les?
	A.	Mg/HCl	\bigcirc	В.	Cu/H	[Cl		
	C.	Na/HCl	Ŏ	D.	Zn/H		Ŏ	
			_					

Federal Board SSC-II Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.40 hours Total Marks: 53

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

SECTION – B (Marks 33)

Q.2 Attempt any **ELEVEN** parts from the following. All parts carry equal marks.

 $(11 \times 3 = 33)$

i. Differentiate between reversible and irreversible reactions with the help of an example.

Ans.

Sr.No	Reversible reaction	Irreversible reaction
1.	The reactions in which products	The reaction in which reactants
	reconverted into reactants is called	converted into products completely
	reversible reaction	or partially is called irreversible
		reaction
2.	It is represented by double arrow	It is represented by single arrow
3.	It proceeds in both directions	It is unidirectional reaction
4.	An equilibrium is established	Equilibrium is never established.
	between reactants and products	

ii. The reaction between PCl₃ and Cl₂ produces PCl₅gas.Derive Kc unit for this reaction with the help of balanced chemical equation.

Ans.

 $PCl_3 + Cl_2 \rightleftharpoons PCl_5$

 $Rf\alpha[PCl_3][Cl_2]$

 $Rf = kf [PCl_3][Cl_2]$

 $Rr\alpha[PCl_5]$

 $Rr = kr [PCl_5]$

At equilibrium the rate of forward reaction becomes equal to rate of reverse reaction.

So,

Rf = Rr

Putting the values

 $kf [PCl_3][Cl_2] = kr [PCl_5]$

kf/kr = [PCl₅] / [PCl₃][Cl₂]

kf/kr = kc

kc = [PCl₅] / [PCl₃][Cl₂]

iii. The process of separating a metal from its ore is called metallurgy. Enlist the names of any three important metallurgical operations.

Ans.

- I. Mining
- II. Crushing and grinding
- III. Concentration unit
 - a. Magnetic separator
 - b. Cyclone separator
 - c. Floatation process

IV. Extraction

- a. Roasting
- b. Smelting
- c. Bessemerization
- V. Refining
- VI. Distillation.

(Students can write any three of them)

iv. What is a neutral salt? Describe its formation with the help of a valid chemical equation.

Ans. A salt resulting from the neutralization of an acid by a base and having no acidic or basic character, especially when dissolved in water.

Example:

HCl+ NaOH → NaCl (Salt) + H₂O

 $HNO_3 + KOH \longrightarrow KNO_3(Salt) + H_2O$

The compounds like NaCl, KCl, K₂SO₄,

v. Show the structures of Ester and Ether functional groups.

Ans.

Ether:

Ether is a class of organic compounds characterized by an oxygen atom bonded to two alkyl or aryl groups.

$$R - O - R'$$

Ester: Esters is formed when a carbon-to-oxygen double bond that is also singly bonded to a second oxygen atom O

vi. List three applications of pH in daily life.

Ans.

- I. Existence of living beings. Organisms require a specific pH for their ideal growth and development.
- II. Digestion of food.
- III. Importance in soil.
- IV. Stopping tooth decay.
- V. Remedy for acidic effect of honeybee bite.

(Students can write any other three valid applications also)

vii. Identify X and Y by the chemical equation given below CH₃-CH₂-CH=CH-CH₃+ Br₂ X

$$X + 2KOH \xrightarrow{Alcoholic} Y$$

Ans. CH₃-CH₂-CH=CH -CH₃ +Br₂ \rightarrow CH₃-CH₂-CHBr-CHBr-CH₃ CH₃-CH₂-CHBr-CHBr-CH₃ + 2KOH \rightarrow CH₃-CH₂CH \equiv CH-CH₃. + 2KBr + 2H₂O

viii. Demonstrate Lowry-Bronsted concept of acids and bases with the help of chemical equation between CH₃COOH and H₂O.

Ans. Acetic acid acts as a Lowry-Bronsted acid, donating a proton to water, which acts as the Lowry-Bronsted base. The products include the acetate ion and hydronium ion. CH₃COOH +H₂O2CH₃COO⁻ +H₃O⁺

ix. Demonstrate oxidation of alkynes with KMnO₄. Write complete reactions.

Ans.

x. Define fractional distillation. Give names of any three fractions of petroleum.

Ans. Fractional distillation is the separation of a mixture into its component parts, or fractions. Chemical compounds are separated by heating them to a temperature at which one or more fractions of the mixture will vaporize. It uses distillation to fractionate.

Fractions of petroleum:

- I. Diesel
- II. Kerosine oil
- III. Naphtha
- IV. Petrol
- V. Lubricating oil
- VI. Waxes

(Students can write any three fractions of petroleum)

O ll

xi. Proteins have peptide linkages (C - N). Show the formation of tripeptide.

Ans.

xii. Nucleic acids are found in every living cell and are vital components of all life. Differentiate between DNA and RNA by structures.

Ans.

DNA VER	sus RNA
DNA is mostly found in nucleus and nucleoid	RNA is mostly found in the cytoplasm
Stands for deoxyribonucleic acid	Stands for ribonucleic acid
Deoxyribose is the sugar where the bases are A, T, C and G	Ribose is the sugar where the bases are A, U, C and G
A long polymer	Shorter than DNA
A pairs with T and C pairs with G	A pairs with U and C pairs with G
Double-stranded and it exhibits a double-helix structure	Single-strand, sometimes it forms secondary and tertiary structures
Prefers B-form	Prefers A-form
More prone to UV damage	Less prone to UV damage
Carries the genetic information necessary for the development, functioning, and reproduction	Mainly involved in protein synthesis, sometimes it regulates the gene expression Visit www.pediaa.com

xiii. Global warming is due to a disturbance in the natural balance of the concentration of greenhouse gases. Discuss three effects of global warming.

Ans.

- 1. Changes in temperature cause changes in rainfall. This results in more severe and frequent storms. They cause flooding and landslides.
- 2. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth.
- 3. More frequent and severe weather. Higher temperatures are worsening many types of disasters, including storms, heat waves, floods, and droughts.
- 4. Higher death rates.
- 5. Dirtier air.
- 6. Higher wildlife extinction rates.
- 7. More acidic oceans.
- 8. Higher sea levels.

(Students can write any other three effects of global warming also)

xiv. Nitric oxide (NO) and nitrogen dioxide (NO₂) cause air pollution. Enlist three effects of these oxides.

Ans.

- 1. Excess nitrogen in the atmosphere can produce pollutants such as ammonia and ozone, which can impair our ability to breathe, limit visibility and alter plant growth.
- 2. When excess nitrogen comes back to earth from the atmosphere, it can harm the health of forests, soils and waterways.
- 3. It pollutes groundwater, streams, and coastal oceans.
- xv. Hard water hampers cleansing action of soap. Identify the substances that causes hardness in water.

Ans. The calcium in hard water retards the cleaning action of soap. The home owner will use up to twice as much soap or detergents and use hotter water when cleaning with hard water than with soft water. Hard water also combines with soaps to form a curd known as "soap scum".

Note: Attempt any **TWO** questions. All questions carry equal marks. $(2 \times 10 = 20)$

Q.3 a. A student collected two samples A and B of hard water from different areas of Rawalpindi. Sample A on boiling gives white precipitate while sample B does not give white precipitate. Identify A and B by chemical reactions. (04)

Ans.
$$Ca(HCO_3)_2$$
 \longrightarrow $CaCO_3 + CO_2 + H_2O$ \bigcirc No white ppt.

Ca(HCO₃)₂ causes temporary hardness so on heating white ppt of CaCO₃ are formed.

Sample B contains CaCl₂ which causes permanent hardness, so it will not give white ppt on heating.

b. H₃PO₄ donates three hydrogen ions. Reaction of KOH with H₃PO₄ gives three salts. KH₂PO₄, K₂HPO₄ and K₃ HPO₄. Identify the nature of each salt and write reaction for the formation of each. (06)

Ans.

$$H_3PO_4+ KOH \longrightarrow KH_2PO_4+H_2O$$

 $H_3PO_4+ 2 KOH \longrightarrow K_2HPO_4+2H_2O$
 $H_3PO_4+ 3KOH \longrightarrow K_3PO_4+ 3H_2O$

KH₂PO₄, K₂HPO₄ have acidic nature while K₃PO₄ is neutral.

Q.4 a. Propose the steps involved in the extraction of Copper metal by reactions. (05)

Ans.

By Bessemerization:

As the mineral has been freed of gangue the concentrated is passed through some chemical process to extract pure metal. In the extraction of copper metal by reduction the Bessemer converter is used. The concentrated cuprous sulphide is roasted in the presence of air and formed cuprous oxide. Cuprous oxide then reduces into copper metal. The copper obtained is called

blister copper because SO_2 produced during this reaction gets trapped inside its surface causing blisters to appear on the surface of copper metal.

$$\begin{array}{ll} 2Cu_2\,\mathrm{S} + 3O_2 \rightarrow 2Cu_2\mathrm{O} & + 2SO_2 \\ Cu_2\,\mathrm{S} + 2Cu_2\mathrm{O} & \rightarrow 6Cu + SO_2 \end{array}$$

By Electrolytic refining of copper:

On passing electric current through the acidified copper sulphate solution, impure copper dissolves forming Cu^{+2} ions. These ions gains electrons at cathode and form Cu atoms, which are deposited on the cathode. In this way pure copper is collected at cathode.

At anode:
$$Cu \rightarrow Cu^{+2} + 2e^{-}$$
 (Oxidation)
At cathode: $Cu^{+2} + 2e^{-} \rightarrow Cu$ (Reduction)

(05)

b. Write down five properties of organic compounds.

Ans.

- 1. Mainly carbon, hydrogen is the main constituent of organic compound. Other elements like nitrogen, sulphur, oxygen and halogens are present in many organic compounds.
- 2. Organic compounds are soluble in organic solvents.
- 3. Organic compounds are generally covalent in nature.
- 4. Organic compounds are volatile. So, they have low melting and boiling points.

Q.5 a. Enlist the diseases caused by the deficiency of vitamin A and D. (04)

Ans. "Deficiency diseases are diseases that are caused by the lack of certain essential nutrients, especially vitamins and minerals, in one's diet over a prolonged period of time." Vitamin A:

Vitamin A is a fat-soluble vitamin. Deficiency of vitamin A leads to night blindness and skin problems such as dryness, itching, and scaling.

Vitamin D:

Vitamin D deficiency causes rickets, which leads to the weakening of bones, especially near the joints. It can also lead to the decaying of teeth and osteomalacia.

b. Enlist the names of layers of atmosphere and explain two layers which are nearest to the Earth. (06)

Ans. The atmosphere is divided into four layers. And the nearest layers to the earth surface are troposphere and stratosphere.

- 1) Troposphere
- 2) Stratosphere
- 3) Mesosphere
- 4) Thermosphere

1) Troposphere:

The layer of the atmosphere closest to the Earth is the troposphere. It begins at the surface of the Earth and extends to about 12 km above the Earth's surface. It is the layer of atmosphere in which we live. Weather occurs in this layer. The temperature of the troposphere decreases with height. On average, for every 1 km increase in altitude, the air gets about 6.5 °C cooler.

2) Stratosphere:

The second layer as one moves upward from the Earth's Surface is called stratosphere. The layer extends from top of the troposphere to about 50 km above the Earth's surface. This layer contains maximum amount of ozone and little amount of water vapour. Ozone saves us from harmful effects of incoming ultraviolet radiations from the sun. In the stratosphere, temperature varies from -55 C to -5 C.
