V	Version No.					ROLL NUMBER								
0	0	0	0		0	0	0	0	0	0	0			
1	1	1	1		1	1	1	1	1	1	1			
2	2	2	2		2	2	2	2	2	2	2			
3	3	3	3		3	3	3	3	3	3	3	Answer Sheet No)	
4	4	4	4		4	4	4	4	4	4	4			
(5)	(5)	(5)	(5)		(5)	(5)	(5)	(5)	(5)	(5)	(5)	Sign. of Candidat	te	
6	6	6	6		6	6	6	6	6	6	6			
7	7	7	7		7	7	7	7	7	7	7			
8	8	8	8		8	8	8	8	8	8	8	Sign. of Invigilate	or	
9	9	9	9		9	9	9	9	9	9	9			
						(CHE	CMI	STI	RY	SSC	–II		
										`	arks Minu	,		
			_		-	ll pai	ts of	this	secti	ion a	re to	be answered on th		
over t	o the	Cer	ntre Su	ıperir	itend	ent.	Dele	ting/o	overv	vritir	ng is 1	not allowed. Do no	t use lead pencil.	
Q.1	Fil	l the	relev	ant b	oubb	le fo	r eac	h pa	rt. E	Cach	part	carries one mark.		
	(1)							_	-			ormed by the reaction	on of Aluminium	
			Hydro A.		AI(C SO ₄)		with	Sulp	huri)		id (H ₂	2SO ₄)? Al ₂ CO ₃	\bigcirc	
			C.	`	(SO_4)			Ŏ)	D		AlCl ₃	Ŏ	
	(2)			le Bu	ildin	gs ar	e dis	integ	rated	l by a	icid r	ain because of the	reaction of acid	
			with: A.	Cal	cium	Sul	nhate)	В		Calcium Nitrate	\cap	
			C.					te C		D		Calcium Oxalate	ŏ	
	(3)		Dipep	tide i	is for	med	by jo	oinin	g of 1	two 1	nolec	cules of:		
	· /		A.	Am	nino a	acids		Q		В		Alcohols	0	
			C.	Car	boxy	/lic a	cids)	D	•	Amines	O	
	(4)		Two p		cts o			rom t	he ca	arbor B	_	tower during the S NH ₄ HCO ₂ and NH	• _	:
			C.		HCO		_	₄ Cl	δ	D		NaHCO ₃ and NH ₃		
	(5)		The e	nd pr	oduc	t of 1	he re	eactio	on of	acet	vlene	with concentrated	alkaline KMnO₄ i	S
	(0)		oxalic	acid	. In t	his r				ene u	nderg	goes:		_
			A. C.		ductio estitu))	B D		Oxidation Rearrangement	\bigcirc	
							4	11	1			C	af landon and	
	(6)								•			ects with one mole of unla of unsaturated	• •	
			A.	C_3	H_4		_	\bigcirc)	В		C_6H_{12}	0	
			C.	C_4	H_{10}			C)	D		$C_7 H_{16}$	O	

(7)	F ⁻ is a A. B. C. D.	a base, because it: Contains OH group Ionizes in water to Can accept an elec Can accept proton									
(8)	Which A. C.	one of the followin CH ₃ - CH ₂ - OH CH ₃ - CHO	ig compou	nds is a B. D.	n aldehyde? CH ₃ - COOH CH ₃ - COCH ₃	0					
(9)	The pl	H of 10 ⁻³ M aqueous	solution o	f NaOH	I is:						
	A.	3	\circ	B.	11	0					
	C.	2	0	D.	9	0					
(10)	Which one of the following pollutant is NOT produced by the burning of fossil fuel?										
	A.	CO	\bigcirc	B.	NO_x	0					
	C.	CFC_s	Ŏ	D.	SO_x	Ŏ					
(11)	For a reversible reaction given below the unit of Kc is: $2SO_2 + O_2 \Longrightarrow 2SO_3$										
	Α.	$mol^{-1} dm^3$	\bigcirc	В.	$\text{mol}^{-1} \text{dm}^{-3}$	\bigcirc					
	C.	mol.dm ⁻³	Ŏ	D.	mol.dm ³	Ŏ					
(12)	The composition of matte produced during the metallurgy of copper is:										
	A.	FeSiO ₃	\circ	B.	FeS & Cu ₂ S	\circ					
	C.	Cu ₂ O & FeS	0	D.	Cu ₂ O & Cu ₂ S	0					

Federal Board SSC-II Examination Chemistry Model Question Paper (Curriculum 2006)

Time allowed: 2.40 hours Total Marks: 53

Note: Answer any eleven parts from Section 'B' and attempt any two questions from Section 'C' on the separately provided answer book. Write your answers neatly and legibly.

	'C' or	the separately provided answer book. Write your answers neatly and legibly.											
		SECTION – B (Marks 33)											
Q.2	Attempt any ELEVEN parts from the following. All parts carry equal marks. $(11 \times 3 = 33)$												
	i.	Classify the following substances as Lewis acids or Lewis bases. a. AlBr ₃ b. CH ₃ -CH ₂ - OH c. CN ⁻¹											
	ii.	How has Le-Chatlier's principle made it possible to get maximum amount of product from Habers process?											
	iii.	Concentration of an aquas solution of potassium hydroxide 1.0×10^{-3} mol/dm ³ . What is its pH? Is this solution acidic, basic or neutral?											
	iv.	What is slaked lime? How is it produced during Solvay process?											
	v.	Write the name and formulas of the three Nitrogen containing fertilizers.											
	vi.	Describe ion exchange method for removal of hardness of water.											
	vii.	For the given reversible reaction equilibrium concentration are: $ N_{2(g)} + 3H_{2(g)} $											
	viii.	Write down balanced chemical equations showing the formation of salt: a. reaction of HCl acid with Al metal b. reaction of HCl acid with calcium carbonate											
	ix.	Write the structural formulas of the following: a. n-Heptane b. Methanal c. Methanoic acid											
	х.	Differentiate between homocyclic and heterocyclic compound with the help of structural formula.											
	xi.	Write two methods of the preparation of propane. Give chemical equation with conditions.											
	xii.	How will you differentiate between Ethane and Ethene using a chemical test.											
	xiii.	Identify A and B in the following chemical reaction: $CH_3 - C \equiv CH + Cl_2 \underline{CCl_4}$ A $A + Cl_2 \underline{CCl_4}$ B											
	xiv.	Discuss ways by which global warming can be decreased?											
	xv.	Define the following with examples: a. Lipids b. Fats c. Oils											

Page 1 of 2

SECTION – C (Marks 20)

 $(2 \times 10 = 20)$ **Note:** Attempt any **TWO** questions. All questions carry equal marks.

Q.3 State law of mass action. Derive Kc expression for the following reaction: a.

> $4HCl(g) + O_2(g)$ \rightleftharpoons 2Cl₂(g) + 2H₂O (g)

- Identify Lowery Bronsted acids and bases in the following reactions. Justify b. your answer. (1+1+1+1)
 - $HCO_3^- + H_2O(l)$ \longrightarrow $CO_3^{-2}(aq) + H_3O^+(aq)$ $NH_3(g) + HNO_3$ \longrightarrow NH_4NO_3 $F^- + BF_3$ \longrightarrow $BF_4^ CH_3COOH + H_2O(l)$ \longrightarrow $CH_3COO^- + H_3O^+(aq)$ (i)
 - (ii)
 - (iii)
 - (iv)
- What is hard water? Explain the methods for removing temporary hardness of **Q.4** (1+2+2)
 - What are nucleic Acid? Describe structure and function of DNA. b. (1+2+2)
- What is functional group? Identify the functional group in the following organic **Q.5** a. compound: (2+1+1+1)
 - (i) CH₃COCH₃
- (ii) CH₃COOH
- (iii) HCOCH₃
- How will you convert propene into propyne. Name the products formed in each b. (3+2)

CHEMISTRY SSC-II

SLOs

SECTION - A

- i. Complete and balance a neutralized balanced equation.
- ii. Describe acid rain and its effects.
- iii. Observe and explain the denaturing of protein.
- iv. Describe reactions of Solvay Process.
- v. Write chemical equation showing reaction of KMnO₄ with alkene.
- vi. Write chemical equation to show the reaction of alkene.
- vii. Classify substance as Lewis Acid or Base
- viii. Recognize and identify a molecule functional group.
- ix. Write the equation for self-ionization of water.
- **x.** Air pollutants.
- xi. Derive an expression for the equilibrium constant and its units.
- **xii.** Describe some metallurgical operations.

SECTION - B

Q.2

- i. Classify substances as Lewis acids or bases.
- ii. Le-Chatlier's principle
- iii. Given the hydrogen ion or hydroxide ion concentration, classify a solution as neutral, acidic, or basic.
- iv. Outline the basic reactions of Solvay process.
- v. Describe the composition of urea.
- vi. Describe methods for eliminating temporary and permanent hardness of water.
- vii. Derive an expression for the equilibrium constant and its units.
- viii. Complete and balance a neutralization reaction.
- ix. Differentiate between different organic compounds on the basis of their functional groups.
- x. Classify organic compounds into straight chain, branched chain and cyclic compounds.
- xi. Write a chemical equation to show the preparation of alkanes from hydrogenation of alkenes and alkynes and reduction of alkyl halides.
- xii. Write chemical equations showing halogenation for alkenes, alkenes and alkynes.
- xiii. Write a chemical equation to show the chemical properties of alkynes.
- xiv. Explain how components of the atmosphere can be used successfully in producing important chemicals.
- xv. Define fat and oil.

SECTION - C

- Q.3 a. Define Law of mass action. Derive Kc expression for the equilibrium constant and its units.
 - b. Use the Bronsted-Lowry theory to classify substances as acids or bases, or as proton donors or proton acceptors. Classify substances as Lewis acids or bases.
- Q.4 a. Differentiate among soft, temporary and permanent hard water. Describe methods for eliminating temporary and permanent hardness of water.
 - b. Nucleic acids and their importance.
- Q.5 a. Differentiate between different organic compounds on the basis of their Functional groups. Write a chemical equation to show the preparation of alkynes from Dehalogenation of 1,2-dihalides and tetrahalides.
 - b. Write chemical equations showing halogenation for alkenes, alkenes and Alkynes and dehydrohalogenation on reactions.

CHEMISTRY SSC-II TABLE OF SPECIFICATION

Topics/Subtopics	Chemical Equilibrium	Acid bases and salts	Organic chemistry	Hydrocarbons	Biochemistry	The atmosphere	Water	Chemical Industries	Total marks for each Assessment Objective	%age
(Knowledge based)				2-xi(03)	1-3(01) 2-xv(03) 4b(05)	1-2(01)	2-vi(03) 4a(05)	1-4(01) 1-12(01) 2-iv(03)	26	29.9%
(Understanding based)	2-vii(03)	1-1(01) 1-7(01) 2-i(03) 2-viii(03) 3b(04)	1-8(01) 2-ix(03) 2-x(03) 5a(05)	1-5(01) 1-6(01) 2-xii(03) 2-xiii(03) 5b(05)	C	1-10(01)		2-v(03)	45	51.7%
(Application based)	1-11(01) 2-ii(03) 3a(06)	1-9(01) 2-iii(03)			OY	2-xiv(03)			16	18.4%
Total marks for each Topic/Subtopic	13	16	12	16	09	05	08	08	87	100%

KEY:

1-1(01) Question No-Part No. (Allocated Marks)